Skip to main content

Tissue Simulants for Ballistics Testing

  • Chapter
  • First Online:
Soft Tissue Simulants

Abstract

Ballistic testing of tissues is a scientific and forensic method used to understand the effects of projectiles, such as bullets or projectiles fired from firearms, on biological tissues. This type of testing is crucial for forensic investigations, medical research, and the development of protective gear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carr D, Lindstrom AC, Jareborg A, Champion S, Waddell N, Miller D et al (2015) Development of a skull/brain model for military wound ballistics studies. Int J Legal Med 129:505–510. https://doi.org/10.1007/S00414-014-1073-2/FIGURES/3

    Article  PubMed  Google Scholar 

  2. Casem DT, Dwivedi AK, Mrozek RA, Lenhart JL (2014) Compression response of a thermoplastic elastomer gel tissue surrogate over a range of strain-rates. Int J Solids Struct 51:2037–2046. https://doi.org/10.1016/J.IJSOLSTR.2013.12.028

    Article  CAS  Google Scholar 

  3. Jussila J, Leppäniemi A, Paronen M, Kulomäki E (2005) Ballistic skin simulant. Forensic Sci Int 150:63–71. https://doi.org/10.1016/J.FORSCIINT.2004.06.039

    Article  PubMed  Google Scholar 

  4. Bracq A, Haugou G, Delille R, Lauro F, Roth S, Mauzac O (2017) Experimental study of the strain rate dependence of a synthetic gel for ballistic blunt trauma assessment. J Mech Behav Biomed Mater 72:138–147. https://doi.org/10.1016/J.JMBBM.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  5. Maiden NR, Byard RW (2016) Unpredictable tensile strength biomechanics may limit thawed cadaver use for simulant research. Aust J Forensic Sci 48:54–58. https://doi.org/10.1080/00450618.2015.1025842

    Article  Google Scholar 

  6. Bir C, Viano D, King A (2004) Development of biomechanical response corridors of the thorax to blunt ballistic impacts. J Biomech 37:73–79. https://doi.org/10.1016/S0021-9290(03)00238-0

    Article  PubMed  Google Scholar 

  7. Venkatasubramanian RT, Wolkers WF, Shenoi MM, Barocas VH, Lafontaine D, Soule CL et al (2010) Freeze-thaw induced biomechanical changes in arteries: Role of collagen matrix and smooth muscle cells. Ann Biomed Eng 38:694–706. https://doi.org/10.1007/S10439-010-9921-9/FIGURES/7

    Article  PubMed  Google Scholar 

  8. Venkatasubramanian RT, Grassl ED, Barocas VH, Lafontaine D, Bischof JC (2006) Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann Biomed Eng 34:823–832. https://doi.org/10.1007/S10439-005-9044-X/FIGURES/10

    Article  PubMed  Google Scholar 

  9. Ming-Che W, Pins GD, Silver FH (1994) Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials 15:507–512. https://doi.org/10.1016/0142-9612(94)90016-7

    Article  Google Scholar 

  10. Epstein E, Munderloh N (1975) Isolation and characterization of CNBr peptides of human (alpha 1 (III) )3 collagen and tissue distribution of (alpha 1 (I) )2 alpha 2 and (alpha 1 (III) )3 collagens. J Biol Chem 250:9304–9312. https://doi.org/10.1016/s0021-9258(19)40644-3

    Article  CAS  PubMed  Google Scholar 

  11. Neuman RE, Logan MA (1950) The determination of collagen and elastin in tissues. J Biol Chem 186:549–556. https://doi.org/10.1016/s0021-9258(18)56248-7

    Article  CAS  PubMed  Google Scholar 

  12. Chanda A, Singh G (2023) Applications, challenges, and future opportunities. Mater Horiz Nat Nanomater 85–92. https://doi.org/10.1007/978-981-99-2225-3_8/COVER

  13. Singh G, Chanda A (2023) Biofidelic gallbladder tissue surrogates. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198835

    Article  Google Scholar 

  14. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. Mater Horiz Nat Nanomater Part F1471:159–170. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  15. Chanda A, Singh G (2023) Introduction to human tissues. Mater Horiz Nat Nanomater 1–12. https://doi.org/10.1007/978-981-99-2225-3_1/COVER

  16. Gupta V, Singh G, Gupta S, Chanda A (2023) Expansion potential of auxetic prosthetic skin grafts: a review. Eng Res Express 5:022003. https://doi.org/10.1088/2631-8695/ACCFE5

    Article  Google Scholar 

  17. Cronin DS (2011) Ballistic gelatin characterization and constitutive modeling. Conf Proc Soc Exp Mech Ser 1:51–55. https://doi.org/10.1007/978-1-4614-0216-9_7/COVER

    Article  Google Scholar 

  18. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  19. Haag H‐G, Herrmann C, Kampf W, Nordsiek K‐H, Streck R, Zerpner D (1989) Functionalized polybutadiene oils as adhesion promotors for mineral fillers in rubber compounds. Die Angew Makromol Chemie 171:1–19. https://doi.org/10.1002/APMC.1989.051710101

  20. Pandey PK, Harmukh A, Khan MK, Iqbal MA, Ganpule SG (2023) Ballistic response of skin simulant against fragment simulating projectiles. Def Technol 30:70–82. https://doi.org/10.1016/J.DT.2023.04.009

    Article  Google Scholar 

  21. Mabbott A, Carr DJ, Champion S, Malbon C (2016) Comparison of porcine thorax to gelatine blocks for wound ballistics studies. Int J Legal Med 130:1353–1362. https://doi.org/10.1007/S00414-015-1309-9/TABLES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  23. Singh G, Chanda A (2023) Development and biomechanical testing of artificial surrogates for vaginal tissue. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198837

    Article  Google Scholar 

  24. Singh G, Chanda A (2023) Development and biomechanical testing of human stomach tissue surrogates. Mater Horiz Nat Nanomater Part F1471:113–125. https://doi.org/10.1007/978-981-99-5064-5_7/COVER

  25. Appleby-Thomas GJ, Wood DC, Hameed A, Painter J, Le-Seelleur V, Fitzmaurice BC (2016) Investigation of the high-strain rate (shock and ballistic) response of the elastomeric tissue simulant Perma-Gel®. Int J Impact Eng 94:74–82. https://doi.org/10.1016/J.IJIMPENG.2016.04.003

    Article  Google Scholar 

  26. Jussila J (2005) Measurement of kinetic energy dissipation with gelatine fissure formation with special reference to gelatine validation. Forensic Sci Int 150:53–62. https://doi.org/10.1016/j.forsciint.2004.06.038

    Article  CAS  PubMed  Google Scholar 

  27. Makode S, Singh G, Chanda A (2021) Development of novel anisotropic skin simulants. Phys Scr 96:125019. https://doi.org/10.1088/1402-4896/AC2EFD

    Article  Google Scholar 

  28. Chen Y, Miao Y, Xu C, Zhang G, Lei T, Tan Y (2010) Wound ballistics of the pig mandibular angle: a preliminary finite element analysis and experimental study. J Biomech 43:1131–1137. https://doi.org/10.1016/J.JBIOMECH.2009.12.009

    Article  PubMed  Google Scholar 

  29. Chanda A, Singh G (2023) Tissues in functional organs—low stiffness. Mater Horiz Nat Nanomater 33–48. https://doi.org/10.1007/978-981-99-2225-3_4/COVER

  30. Singh G, Chanda A (2023) Development and mechanical characterization of artificial surrogates for brain tissues. Biomed Eng Adv 5:100084. https://doi.org/10.1016/J.BEA.2023.100084

    Article  Google Scholar 

  31. Falland-Cheung L, Piccione N, Zhao T, Lazarjan MS, Hanlin S, Jermy M et al (2016) Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing. Forensic Sci Int 263:169–175. https://doi.org/10.1016/J.FORSCIINT.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  32. Lazarjan MS, Geoghegan PH, Jermy MC, Taylor M (2014) Experimental investigation of the mechanical properties of brain simulants used for cranial gunshot simulation. Forensic Sci Int 239:73–78. https://doi.org/10.1016/J.FORSCIINT.2014.03.022

    Article  PubMed  Google Scholar 

  33. Chanda A, Callaway C (2018) Tissue anisotropy modeling using soft composite materials. Appl Bionics Biomech 2018. https://doi.org/10.1155/2018/4838157

  34. Goode T, Shoemaker G, Schultz S, Peters K, Pankow M (2019) Soft body armor time-dependent back face deformation (BFD) with ballistics gel backing. Compos Struct 220:687–698. https://doi.org/10.1016/J.COMPSTRUCT.2019.04.025

    Article  Google Scholar 

  35. Thali MJ, Kneubuehl BP, Zollinger U, Dirnhofer R (2002) The, “Skin–skull–brain model”: a new instrument for the study of gunshot effects. Forensic Sci Int 125:178–189. https://doi.org/10.1016/S0379-0738(01)00637-5

    Article  CAS  PubMed  Google Scholar 

  36. Mahoney PF, Carr DJ, Delaney RJ, Hunt N, Harrison S, Breeze J et al (2017) Does preliminary optimisation of an anatomically correct skull-brain model using simple simulants produce clinically realistic ballistic injury fracture patterns? Int J Legal Med 131:1043–1053. https://doi.org/10.1007/S00414-017-1557-Y/TABLES/7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jussila J (2004) Preparing ballistic gelatine—review and proposal for a standard method. Forensic Sci Int 141:91–98. https://doi.org/10.1016/J.FORSCIINT.2003.11.036

    Article  CAS  PubMed  Google Scholar 

  38. Watkins FP, Pearce BP, Stainer MC (1988) Physical effects of the penetration of head simulants by steel spheres. J Trauma Inj Infect Crit Care 28:S40–54

    Google Scholar 

  39. De Boer HH (Hans), Van der Merwe AE (Lida), Soerdjbalie-Maikoe V (Vidija) (2016) Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med 130:1371–1377. https://doi.org/10.1007/S00414-016-1324-5/TABLES/4

  40. Smith MJ, Brickley MB, Leach SL (2007) Experimental evidence for lithic projectile injuries: improving identification of an under-recognised phenomenon. J Archaeol Sci 34:540–553. https://doi.org/10.1016/J.JAS.2006.06.008

    Article  Google Scholar 

  41. Gupta V, Singh G, Chanda A (2023) Development of hierarchical auxetic skin graft simulants with high expansion potential. Biomed Eng Adv 5:100087. https://doi.org/10.1016/J.BEA.2023.100087

    Article  Google Scholar 

  42. Gupta V, Singla R, Singh G, Chanda A (2023) Development of soft composite based anisotropic synthetic skin for biomechanical testing. Fibers 11:55. https://doi.org/10.3390/FIB11060055

  43. Gupta V, Singh G, Chanda A (2023) High expansion auxetic skin graft simulants for severe burn injury mitigation. Eur Burn J 4:108–120. https://doi.org/10.3390/EBJ4010011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Tissue Simulants for Ballistics Testing. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_13

Download citation

Publish with us

Policies and ethics