Skip to main content

Liquid Scintillation Based In-Vitro Analysis of Various Radionuclides in Bioassay Samples

  • Chapter
  • First Online:
Handbook on Radiation Environment, Volume 2

Abstract

The chapter reviews the literature on application of Liquid Scintillation Counting for in-vitro analysis of various α and β radionuclides in bioassay samples viz., urine and nasal swab samples. Basic mechanism and principle of Liquid scintillation Counting technique is highlighted in this chapter. Metabolism of tritium in the human body is also elaborated. The chapter also presents the various sample preparation techniques along with the quench correction methods for estimation of tritium. Dose control criteria, principle of dose calculation and medical intervention for the same is discussed. Various methodologies adapted for rapid estimation of 90Sr and 32P as high energy beta emitters and 125I and 55Fe as electron capture radionuclides are highlighted. Measurement capability of Liquid scintillation Counting for gross α/β screening in bioassay samples is also illustrated. The chapter reviews various available extractants and methodologies for rapid solvent extraction of Pu/Am coupled with Liquid scintillation Counting. Literature review on non-invasive technique using 14C urea breath test in the diagnosis of Helicobacter pylori infection is highlighted in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schonhofer F (1998) Use of low-level liquid scintillation spectrometry for rapid measurement and decision making. Radioact Radiochem 9:18–24

    Google Scholar 

  2. Horrocks DL (1974) Applications of scintillation counting. Academic Press, New York

    Google Scholar 

  3. Brooks FD (1979) Development of organic scintillation. Nucl Instrum Methods 162:477

    Article  ADS  Google Scholar 

  4. McKlveen JW, McDowell WJ (1984) Liquid scintillation alpha spectrometry techniques. Nucl Instrum Methods Phys Res 223(2–3):372–376

    Google Scholar 

  5. Mirashi NN, Keshav C, Aggarwal SK (2000) Liquid scintillation counting techniques for the determination of some alpha emitting actinides: a review. BARC report

    Google Scholar 

  6. Dacheux N, Aupiais J (1997) Determination of uranium, thorium, plutonium, americium and curium ultra-traces by photon electron rejecting α liquid scintillation. Anal Chem 69(13):2275–2282

    Article  Google Scholar 

  7. Cherry SR, Sorenson JA, Phelps ME (2012) Radiation detectors. In: Cherry SR, Sorenson JA, Phelps ME (eds) Physics in nuclear medicine, 4th edn. W.B. Saunders, pp 87–106

    Google Scholar 

  8. Tinker RA, Smith JD, Cooper MB (1997) Determination of strontium-90 in environmental samples containing thorium. Analyst 122:1313–1318

    Article  ADS  Google Scholar 

  9. Oh JS, Warwick PE, Croudace IW, Lee SH (2013) Rapid measurement of 241Pu activity at environment level using low-level liquid scintillation analysis. J Radioanal Nucl Chem 298:353–359

    Article  Google Scholar 

  10. Cakal GO, Guven R, Yucel H (2015) An application of LSC method for the measurement of gross alpha and beta activities in spiked water and drinking water samples. Nukleonika 60(3):637–642

    Article  Google Scholar 

  11. Nikolov J, Stojkovic I, Todorovic N, Tenjovic B, Vukovic S, Knezevic J (2018) Evaluation of different LSC methods for 222Rn determination in waters. Appl Radiat Isot 142:56–63

    Article  Google Scholar 

  12. Abbasi A (2018) A review of the analytical methodology to determine radium-226 and radium-228 in drinking waters. Radiochim Acta 106(10):819–829

    Article  Google Scholar 

  13. Blanco P, Lozano JC, Gomez Escobar V, Vera Tome F (2004) A simple method for 210Pb determination in geological samples by liquid scintillation counting. Appl Radiat Isot 60(1):83–88

    Article  Google Scholar 

  14. Maxwell SL, Culligan BK, Kelsey-Wall A, Shaw PJ (2012) Rapid determination of actinides in emergency food samples. J Radioanal Nucl Chem 292:339–347

    Article  Google Scholar 

  15. Lin Z, Healey S, Wu Z (2016) Rapid and simultaneous detection of α/β radioactivity in food by solid phase extraction liquid scintillation counting. J Radioanal Nucl Chem 307:1987–1994

    Article  Google Scholar 

  16. Cooper EL, Cox JM, Workman WJ (1998) Analysis of Sr-90 and α-particle emitters on air filters and swipe samples using a liquid scintillation counter with α/β discrimination. Radioact Radiochem 9:25–40

    Google Scholar 

  17. Diodati JM, Sartori FM (2007) 239Np as a tracer of 237Np in effluent samples and low-level nuclear waste. J Radioanal Nucl Chem 272(1):11–15

    Article  Google Scholar 

  18. L’Annunziata MF, Kessler MJ (2012) Liquid scintillation analysis: principles and practice. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  19. Aupiais J (2004) Deconvolution of alpha liquid scintillation spectra for quantitative analysis of actinide elements in water samples. Radiochim Acta 92(3):125–132

    Article  Google Scholar 

  20. Stamoulis KC, Loannides KG, Karamanis D (2010) Deconvolution of liquid scintillation alpha spectra of mixtures of uranium and radium isotopes. Anal Chim Acta 657(2):108–115

    Article  Google Scholar 

  21. Pujol L, Sanchez-Cabeza JA (1999) Optimisation of liquid scintillation counting condition for rapid tritium determination in aqueous sample. J Radioanal Nucl Chem 242(2):391–398

    Article  Google Scholar 

  22. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549

    Article  Google Scholar 

  23. ISOE Annual Report (2018) Organization for Economic Co-operation and Development

    Google Scholar 

  24. Choppin G, Liljenzin JO, Rydberg J (1995) Radiochemistry and nuclear chemistry, 2nd edn. Butterworth-Heinemann, Oxford, p 70

    Google Scholar 

  25. UNSCEAR Report (2017) Sources, effects and risks of ionizing radiation. In: Annex C—biological effects of selected internal emitters—tritium. United Nations, New York

    Google Scholar 

  26. ICRP 78 (1997) Individual monitoring for internal exposure of workers, vol 27, no 3/4

    Google Scholar 

  27. ICRP (2002) Basic anatomical and physiological data for use in radiological protection reference values. ICRP publication 89. Ann ICRP 32:3–4

    Google Scholar 

  28. International Atomic Energy Agency (2018) Occupational radiation protection. IAEA safety standards series no. GSG-7

    Google Scholar 

  29. Hideki M, Yoshiya S, Asako JN, Noriko U, Mitsuaki O, Shizuko K, Mikio S, Masaaki S, Ryoichi H, Hiroshi T (2021) Health effects triggered by tritium: how do we get public understanding based on scientifically supported evidence? J Radiat Res 62(4):557–563

    Article  Google Scholar 

  30. Coops AJ, Van der Jagt PJ, Duijsings JH, Beentjes LB (1985) A multivial distillation apparatus for routine tritium urine analysis. Int J Appl Radiat Isot 36:408–411

    Google Scholar 

  31. Nogawa N, Makide Y (1999) A sub-boiling distillation method for the preparation of low carbon content water from urine samples for tritium measurement by liquid scintillation counting. Appl Radiat Isot 50:985–988

    Google Scholar 

  32. Wood MJ, McElroy RGC, Surette RA, Brown RM (1993) Tritium sampling and measurement. Health Phys 65(6):610–627

    Google Scholar 

  33. Strom DJ, Bohner KR (1989) An inexpensive and practical ambient-temperature vacuum still for bioassays. Health Phys 56(3):355–359

    Google Scholar 

  34. Ishii K, Yoshino K (1980) Background radio activities in urine using a quick analyzing technique. Denryoku Chuo Kenkyusho Houkoku (No. 280013)

    Google Scholar 

  35. Eakin JD, Hutchison WP, Lally AE (1975) The radiological hazard of tritium sorbed on metal surfaces. Health Phys 28(3):213–224

    Article  Google Scholar 

  36. Momoshima N, Nagasato Y, Takashima Y (1986) A sensitive method for the determination of tritium in urine. J Radioanal Nucl Chem 107(6):353–359

    Article  Google Scholar 

  37. Stencel JR, Gilbert JD, Griesbach OA, Greco JM (1988) TFTR health physics tritium measurements following D–D operation. Fusion Technol 14(2):1047–1053

    Google Scholar 

  38. Mingote RM, Barbeira PJS, Rocha Z (2006) Methodology for rapid tritium determination in urine. J Radioanal Nucl Chem 269(2):475–479

    Article  Google Scholar 

  39. Watanabe Y, Kuwabara J (2006) Ultraviolet photolysis of urine for suppression of color quenching prior to liquid scintillation counting of tritium. Anal Bioanal Chem 384(2):547–550

    Article  Google Scholar 

  40. Butler FE (1961) Determination of tritium in water and urine. Anal Chem 33(3):409–414

    Google Scholar 

  41. Chinese Standards (1997) Analytical determination of tritium in urine, EJ/T 1047–1997. China National Nuclear Corporation, Beijing

    Google Scholar 

  42. Bao MS, Yan QJ, Qing T, Xiang ZS, Liang LY, Su X (2015) Determination of total tritium in urine from residents living in the vicinity of nuclear power plants in Qinshan, China. J Environ Res Public Health 12(1):888–894

    Article  Google Scholar 

  43. Pedehontaa-Hiaa G, Holstein H, Mattsson S, Raaf CL, Stenstrom KE (2020) Tritium in urine from members of the general public and occupationally exposed workers in Lund, Sweden, prior to operation of the European Spallation Source. J Environ Radioact 213:106141

    Article  Google Scholar 

  44. Hou X (2011) Analysis of urine for pure beta emitters: methods and application. Health Phys 101(2):159–169

    Article  Google Scholar 

  45. Yoon S, Ha W-H, Seun SL (2013) Tritium analysis of urine samples from the general Korean public. Appl Radiat Isot 81:276–278

    Article  Google Scholar 

  46. Okita GT, Spratt J, Le Roy GV (1956) Liquid-scintillation counting for assay of tritium in urine. Nucleonics 14:76–79

    Google Scholar 

  47. L’Annunziata MF, Kessler MJ (eds) (1998) Handbook of radioactivity analysis. Academic Press, San Diego

    Google Scholar 

  48. Reddy P, Wankhede SM, Mandal P, Sawant PD (2021) Intra-laboratory inter-comparison exercise for tritium measurement using zero detection threshold technique. In: 34th IARPNC-2020 virtual conference, p 75

    Google Scholar 

  49. Radiation protection for nuclear facilities (2005) AERB/NF/SM/O-2, Rev-4

    Google Scholar 

  50. International Commission on Radiological Protection (1978) The principles and general procedures for handling emergency and accidental exposures of workers. Publication 28. Pergamon Press, Oxford and New York

    Google Scholar 

  51. Foy JM, Schnieden H (1960) Estimation of total water (virtual tritium space) in the rat, cat, rabbit, guinea-pig and man, and the biological half-life of tritium in man. J Physiol 154:169–176

    Article  Google Scholar 

  52. U.S. Department of Energy/U.S. Nuclear Regulatory Commission (DOE/NRC) (2003) Radiological dispersive devices

    Google Scholar 

  53. Li C, Sadi BB, Moodie G, Daka JN, Lai EPC, Kramer GH (2009) Field deployable technique for 90Sr emergency bioassay. Radiat Prot Dosim 136(2):82–86

    Article  Google Scholar 

  54. Sadi BB, Li C, Jodayree S, Lai EP, Kochermin V, Kramer GH (2010) A rapid bioassay method for the determination of 90Sr in human urine sample. Radiat Prot Dosim 140(1):41–48

    Article  Google Scholar 

  55. Dai X, Cui Y, Kramer TS (2013) A rapid method for determining strontium-90 in urine samples. J Radioanal Nucl Chem 296:363–368

    Article  Google Scholar 

  56. Plionis A, Gonzales ER, Landsberger S, Peterson D (2009) Evaluation of flow scintillation analysis for the determination of Sr-90 in bioassay samples. Appl Radiat Isot 67:14–20

    Article  Google Scholar 

  57. Grahek Z, Dulanska S, Karanovic G, Coha I, Tucakovic I, Nodilo M, Matel Ľ (2018) Comparison of different methodologies for the 90Sr determination in environmental samples. J Environ Radioact 181:18–31

    Article  Google Scholar 

  58. Ritika D, Sawant PD, Bhade SPD, Kulkarni MS (2020) Development of extractive liquid scintillation spectrometry for the determination of Sr-90 in urine samples for emergency bioassay. In: Proceedings of 34th IARPNC-2020, p 222

    Google Scholar 

  59. Visser G (2016) The application of Sr-spec resin in the analysis of 90Sr in effluent and environmental samples at KNPS. Cape Peninsula University of Technology, Peninsula. http://hdl.handle.net/20.500.11838/2327

  60. Wankhede SM, Sawant PD, Rao DD, Pradeep Kumar KS (2014) A rapid bioassay method for strontium estimation in nuclear/radiological emergencies. Radiat Prot Environ 37(2):95–100

    Google Scholar 

  61. Kramer GH, Davies JM (1982) Isolation of strontium-90, yttrium-90, promethium-147, and cerium-144 from wet ashed urine by calcium oxalate coprecipitation and sequential solvent extraction. Anal Chem 54(8):1428–1431

    Article  Google Scholar 

  62. Tsroya S, German U, Pelled O, Katorza E, Alfassi ZB (2013) Determination of 90Sr–90Y activity in urine samples by using Cherenkov counting. Appl Radiat Isot 73:12–16

    Article  Google Scholar 

  63. Yoon S, Pak MJ, Park S, Yoo J, Ha WH, Jang HK, Kim JK (2014) 32P measurement of urine samples and internal dose assessment for radiation workers in life science laboratories. J Radiol Prot 34(4):775–785

    Article  Google Scholar 

  64. Yang Y, Ma Y, Wang Y, Dai X (2020) A rapid screening method for 32P in urine samples by TDCR Cerenkov measurement. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07304-4

    Article  Google Scholar 

  65. Wankhede SM, Sawant PD, Yadav RB, Rao DD (2016) Methodology for estimation of phosphorus-32 in bioassay samples by Cerenkov counting. Radiat Prot Environ 39:149–154

    Article  Google Scholar 

  66. Preedy VR (2009) Comprehensive handbook of iodine. Academic Press, Elsevier Publication

    Google Scholar 

  67. Ching YC, Robert YLC (1990) Bioassay for iodine-125. J Nucl Med Technol 18(2):98–101

    Google Scholar 

  68. Jimenez F, Deban L, Pardo R, García-Talavera P (2012) Combination of liquid scintillation counting and passive sampling strategy for the determination of 131I in air and application to estimate the inhalation dose to the staff of a nuclear medicine service. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(12):1843–1848

    Article  Google Scholar 

  69. Sankhla R, Singh IS, Rao DD (2015) Development of thyroid monitoring system for measurement of iodine 125. In: Proceedings of NUCAR 2015, pp 648–649

    Google Scholar 

  70. Bhade SPD, Sankhla R (2023) Standardization of a liquid scintillation counting based methodology for quantification of 125I in urine sample. In: Book of abstracts, 6th Asian and oceanic congress for radiation protection (AOCRP-6), pp S186–S187

    Google Scholar 

  71. Eckert & Ziegler (2010) Recommended nuclear decay data: 55Fe. Nuclitec GmbH

    Google Scholar 

  72. ICRP Publication 69 (1995) Age-dependent doses to members of the public from intake of radionuclides: part 3 ingestion dose coefficients. Pergamon, Oxford

    Google Scholar 

  73. Guerin N, Dai X (2015) Determination of 55Fe in urine by liquid scintillation counting. J Radioanal Nucl Chem 304:1059–1069

    Article  Google Scholar 

  74. Hou X (2018) Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 318:1597

    Article  Google Scholar 

  75. Application note, HIDEX 300SL 453 TM, DOC 413-001 version 1.0

    Google Scholar 

  76. Bhade SPD, Kulkarni DB, Sankhla R, Sawant PD (2021) Development of methodology to estimate 55Fe in aqueous samples using LSC technique. In: Proceedings of 15th biennial DAE-BRNS symposium on nuclear and radiochemistry (NUCAR-2021), p 189

    Google Scholar 

  77. Skwarzec B, Holm E, Struminska D (2001) Radioanalytical determination of 55Fe and 63Ni in the environmental samples. Chem Anal (Warsaw) 46:23

    Google Scholar 

  78. Cregan SP, Leon JW, Linauskas SH (1993) Bioassay techniques for 55Fe in urine samples. CA9500471, AECL-10778, COG-92-398

    Google Scholar 

  79. Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285

    Google Scholar 

  80. Knoll GF (2010) Radiation detection and measurement, 4th edn. ISBN: 978-0-470-13148-0

    Google Scholar 

  81. Gonzalez CH, Bercedo IS (2019) Rapid procedure for actinides and 90Sr analysis in emergency urine spot samples applied in the GHSI-RNWG emergency intercomparison exercise. Appl Radiat Isot 144:19–23

    Article  Google Scholar 

  82. Prabhu SP, Reddy PJ, Wankhede SM, Panda S, Raveendran N, Sawant PD, Chaudhury P, Kulkarni MS (2023) Emergency radiobioassay methodologies for first responders & public approach. BARC Newsl (387). ISSN: 0976-2108

    Google Scholar 

  83. Bhade SPD, Ajay K, Reddy PJ, Kolekar RV, Rajvir S, Pradeepkumar KS (2015) Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab, India. J Radioanal Nucl Chem 307(1):395–405

    Google Scholar 

  84. Bhade SPD, Reddy PJ, Anil Kumar S, Kolekar RV, Singhal RK, Singh R (2017) Study of liquid scintillation α spectral properties. Appl Radiat Isot 122:121–126

    Article  Google Scholar 

  85. Reese RP, Shanks ST, Preston RT (2007) Optimization of screening for radioactivity in urine by liquid scintillation. Sandia report, SAND2007-5312

    Google Scholar 

  86. Sas D, Janda J (2017) Rapid determination of gross alpha/beta activity in urine with LSC. J Radioanal Nucl Chem 311(1):23–27

    Article  Google Scholar 

  87. Piraner O, Jones R (2021) Urine gross alpha/beta bioassay method development using liquid scintillation counting techniques. J Radioanal Nucl Chem 327(1):513–523

    Article  Google Scholar 

  88. Li C, Vlahovich S, Dai X, Richardson RB, Daka JN, Kramer GH (2010) Requirements for radiation emergency urine bioassay techniques for the public and first responders. Health Phys 99(5):702–707

    Article  Google Scholar 

  89. Li CI (2011) International workshop on emergency radiobioassay: considerations, gaps and recommendations. Health Phys 101(2):107–111

    Article  Google Scholar 

  90. Bhade SPD, Reddy PJ, Narayanan A, Narayan KK, Babu DAR, Sharma DN (2010) Standardization of calibration procedures for quantification of gross alpha and gross beta activities using liquid scintillation counter. J Radioanal Nucl Chem 84:367–375

    Article  Google Scholar 

  91. Shoji M, Kondo T, Honoki H, Nakajima T (2007) Investigation of monitoring for internal exposure by urine bioassay in a biomedical research facility. Radiat Prot Dosim 127(1–5):456–460

    Article  Google Scholar 

  92. Piraner O, Jones RL (2009) Urine gross alpha/beta analysis by liquid scintillation counting for terrorism preparedness. In: Eikenberg J, Jaggi M, Beer H, Baehrle H (eds) Advances in liquid scintillation spectrometry, 2008. Radiocarbon Publishers, University of Arizona, Tucson, pp 41–46

    Google Scholar 

  93. Yoon S, Ha WH, Yoo J, Lee SS (2014) Screening of alpha- and beta-emitting radionuclides using liquid scintillation counting and monitoring procedures in radiation emergencies. Health Phys 107(5):382–387

    Article  Google Scholar 

  94. Yoon S, Kim Y, Ha WH, Jin YW (2018) Screening criteria for the general public in radiation emergencies from liquid scintillation urinalysis. Health Phys 114(1):27–31

    Article  Google Scholar 

  95. Piraner O, Jones R (2020) The effect of quench agent on urine bioassay for various radionuclides using Quantulus™1220 and Tri-Carb™3110. J Radioanal Nucl Chem 326(1):657–663

    Google Scholar 

  96. United States Environmental Protection Agency (USEPA) (1991) Part 2. CFR parts 141, 142, national primary drinking water regulations; radionuclides; proposed rule. Fed Reg 56(138):33072

    Google Scholar 

  97. Garcia-Torano E (2006) Current status of alpha-particle spectrometry. Appl Radiat Isot 64(10–11):1273–1280

    Google Scholar 

  98. Herranz M, Idoeta R, Abelairas A, Legarda F (2006) Radon fixation for determination of 224Ra, 226Ra and 228Ra via gamma-ray spectrometry. Radiat Meas 41(4):486–491

    Article  Google Scholar 

  99. Copia L, Nisi S, Plastino W (2015) Low-level 226Ra determination in groundwater by SF-ICP-MS: optimization of separation and pre-concentration methods. J Anal Sci Technol 6:22

    Article  Google Scholar 

  100. Blackburn R, Al-Masri MS (1993) Determination of radon-222 and radium-226 in water samples by Cerenkov counting. Analyst 118:873–876

    Article  ADS  Google Scholar 

  101. Ariffin NAN, Mahmood Z, Mohamed R (2011) Application of in-house method for determination of radium isotopes in environmental samples using the liquid scintillation counting technique. J Anal Sci Methods Instrum 1:1–8

    Google Scholar 

  102. Bhade SPD, Reddy PJ, Anil Kumar S, Singhal RK, Rao DD (2018) Calibration and optimization of α/β separation procedures for determination of radium/radon in single- and two-phase liquid scintillation systems. J Radioanal Nucl Chem 315:13–20

    Article  Google Scholar 

  103. Kim G, Burnett W, Dulai H, Swarzenski P, Moore W (2002) Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environ Sci Technol 35:4680–4683

    Article  ADS  Google Scholar 

  104. Dowdall M, Selenaes OG, Gwynn JP, Davids C (2004) Simultaneous determination of 226Ra and 238U in soil and environmental materials by gamma-spectrometry in the absence of radon progeny equilibrium. J Radioanal Nucl Chem 261:513–521

    Article  Google Scholar 

  105. Sadi BB, Li C, Kramer GH (2012) An emergency radio-bioassay method for 226Ra in human urine samples. Radiat Prot Dosim 151(1):10–16

    Article  Google Scholar 

  106. International Commission on Radiological Protection (1986) The metabolism of plutonium and related elements. ICRP publication 48. Ann ICRP 16:2–3

    Google Scholar 

  107. International Commission on Radiological Protection (1993) Age-dependent doses to members of the public from intake of radionuclides—part 2 ingestion dose coefficients. ICRP publication 67. Ann ICRP 23:3–4

    Google Scholar 

  108. Helal AI, Zahran NF, Amr MA, Abd El-Lateef AM, Bashter II, Mohsen HT, Abbas Y (2004) Ultra-trace and isotope ratios analyses of some radionuclides by ICP-MS. Radiochim Acta 92:369–374

    Google Scholar 

  109. Arginelli D, Berton G, Bortoluzzi S, Canuto G, Montalto M, Nocente M, Ridone S, Vegro M (2008) Purification and separation of 239+240Pu and 241Am in biological samples by anion-exchange and extraction chromatography for high resolution alpha-spectrometry analyses. J Radioanal Nucl Chem 277:65–71

    Article  Google Scholar 

  110. McDowell WJ, Henley LC (1972) An evaluation of the possibility of identifying alpha emitters in low-count-rate samples using some new liquid scintillation counting techniques, ORNL-TM-3676, p 13

    Google Scholar 

  111. McDowell WJ, Coleman CF (1973) Some methods of controlling quenching in extractive scintillators for liquid scintillation counting of alpha-emitting nuclides. Anal Lett 6(9):795–799

    Article  Google Scholar 

  112. Shaw PG (1989) International conference on new trends in liquid scintillation counting and organic scintillators. Gatlinburg, TN

    Google Scholar 

  113. Yang D, Zhu Y, Möbius S, Keller C (1991) Rapid method for alpha counting with extractive scintillator and pulse shape analysis. J Radioanal Nucl Chem Lett 144(1):63

    Google Scholar 

  114. Yang D, Zhu Y (1991) International topical conference on methods and applications of radioanalytical chemistry II (MARC-2). In: Abstracts: American nuclear society, 16. RN: CONF-910422, Kona, HI

    Google Scholar 

  115. Yang D, Zhu Y, Jiao R (1994) Determination of Np, Pu and Am in high level radioactive waste with extraction liquid scintillation counting. J Radioanal Nucl Chem 183(2):245–260

    Google Scholar 

  116. Panda S, Reddy PJ, Yadav JR, Sawant PD, Kulkarni MS (2022) Development of a rapid technique for sequential separation of plutonium/americium in nasal swab using solvent extraction and liquid scintillation spectrometry. Appl Radiat Isot 186:110297

    Article  Google Scholar 

  117. Diaconu S, Predescu A, Moldoveanu A, Pop CS, Fierbințeanu-Braticevici C (2017) Helicobacter pylori infection: old and new. J Med Life 10(2):112–117

    Google Scholar 

  118. Blaser MJ (1998) Helicobacter pylori and gastric diseases. BMJ 316:1507–1510

    Article  Google Scholar 

  119. Kusters JG, van Vilet AHM, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490

    Article  Google Scholar 

  120. Savarino V, Vigneri S, Celle G (1999) The 13C urea breath test in the diagnosis of Helicobacter pylori infection. Gut 45:118–122

    Article  Google Scholar 

  121. Tiwari BP, Nistala S, Patil SP, Kalgutkar DP, Jayachandran N, Chander H, Basu S (2014) Evaluation of the 14C-urea breath test using indigenously produced 14C-urea capsules and a modified technique for trapping exhaled breath: a pilot study. Nucl Med Commun 35:325–330

    Article  Google Scholar 

  122. Swaroop K, Jayachandran, Patil SL, Somashekarappa HM (2011) A study of Helicobacter pylori infection using the 14C UBT method. Radiat Prot Environ 34(3):206–209

    Google Scholar 

  123. Kolekar RV, Gadgil A, Bhade SPD, Reddy PJ, Bhandarkar P, Roy N, Patil SP, Singh R (2016) Study on urea breath test a tool for Helicobacter pylori infection. Radiat Prot Environ 39(3):146–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali P. D. Bhade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhade, S.P.D., Reddy, P.J. (2024). Liquid Scintillation Based In-Vitro Analysis of Various Radionuclides in Bioassay Samples. In: Aswal, D.K. (eds) Handbook on Radiation Environment, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-97-2799-5_22

Download citation

Publish with us

Policies and ethics