Skip to main content

Research on Dynamic Community Detection Method Based on Multi-dimensional Feature Information of Community Network

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14658))

Included in the following conference series:

Abstract

With the continuous development of technology, we have the ability to fully record all aspects of data information of every individual in the society, so how to utilize this information to create greater value is becoming more and more important. Compared with the traditional static community detection, the study of dynamic community detection is more in line with the real situation in the society. Thus, in this paper, a method that can utilize the information of diversified dynamic community networks is proposed, i.e., Dynamic Community Detection Method based on Multidimensional Feature Information of Community (Dcdmf), which utilizes neural networks with strong learning and adaptive capabilities, the ability to automatically extract useful features and process complex data, and the ability to process the graph nodes and the data between the nodes of the dynamic community network, and the ability to real-time adjust the current community representation data based on historical information, and record the current community representation data for the next moment of community data. The experimental results in the paper show that the method has a certain degree of effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bollobás, B.: Modern Graph Theory. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0619-4

    Book  Google Scholar 

  2. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  3. Gasparetti, F., Micarelli, A., Sansonetti, G.: Community detection and recommender systems. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 330–343. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110160

    Chapter  Google Scholar 

  4. Qiu, B., Ivanova, K., Yen, J., Liu, P.: Behavior evolution and event-driven growth dynamics in social networks. In: 2010 IEEE Second International Conference on Social Computing, Minneapolis, pp. 217–224. IEEE (2010). https://doi.org/10.1109/SocialCom.2010.38

  5. Dakiche, N., Tayeb, F.B., Slimani, Y., Benatchba, K.: Tracking community evolution in social networks: a survey. Inf. Process. Manag. 56, 1084–1102 (2019)

    Article  Google Scholar 

  6. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, Odense, pp. 176–183. IEEE (2010). https://doi.org/10.1109/ASONAM.2010.17

  7. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  9. Toth, C., Helic, D., Geiger, B.C.: Synwalk: community detection via random walk modelling. Data Min. Knowl. Disc. 36, 739–780 (2022)

    Article  MathSciNet  Google Scholar 

  10. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105, 1118–1123 (2007)

    Article  Google Scholar 

  11. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, P., Gungör, T., Gurgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  12. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  14. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  15. Chen, Z., Li, L., Bruna, J.: Supervised community detection with line graph neural networks Machine Learning. ArXiv (2017)

    Google Scholar 

  16. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  18. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 554–560. Association for Computing Machinery, New York (2006)

    Google Scholar 

  19. Lin, Y., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: FacetNet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 685–694. Association for Computing Machinery, New York (2008)

    Google Scholar 

  20. Folino, F., Pizzuti, C.: An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Trans. Knowl. Data Eng. 26(8), 1838–1852 (2014)

    Article  Google Scholar 

  21. Li, H., Yin, Y., Li, Y., Zhao, Y., Wang, G.: Large-scale dynamic network community detection by multi-objective evolutionary clustering. J. Comput. Res. Dev. 56(2), 281–292 (2019)

    Google Scholar 

  22. Liu, K., Huang, J., Sun, H., Wan, M., Qi, Y., Li, H.: Label propagation based evolutionary clustering for detecting overlapping and non-overlapping communities in dynamic networks. Knowl.-Based Syst. 89, 487–496 (2015)

    Article  Google Scholar 

  23. Ma, H., Huang, J.: CUT: community update and tracking in dynamic social networks. In: Social Network Mining and Analysis (2013)

    Google Scholar 

  24. Li, X., Wu, B., Guo, Q., Zeng, X., Shi, C.: Dynamic community detection algorithm based on incremental identification. In: 2015 IEEE International Conference on Data Mining Workshop, Atlantic City, pp. 900–907. IEEE (2015). https://doi.org/10.1109/ICDMW.2015.158

  25. Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: 2011 Proceedings IEEE INFOCOM, Shanghai, pp. 2282–2290. IEEE (2011). https://doi.org/10.1109/INFCOM.2011.5935045

  26. Yang, B., Liu, D.: Force-based incremental algorithm for mining community structure in dynamic network. J. Comput. Sci. Technol. 21, 393–400 (2006)

    Article  MathSciNet  Google Scholar 

  27. Cazabet, R., Rossetti, G.: Challenges in community discovery on temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Network Theory. CSS, pp. 185–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23495-9_10

    Chapter  Google Scholar 

  28. Mohammadmosaferi, K.K., Naderi, H.: Evolution of communities in dynamic social networks: an efficient map-based approach. Expert Syst. Appl. 147, 113221 (2020)

    Article  Google Scholar 

  29. Zarayeneh, N., Kalyanaraman, A.: A fast and efficient incremental approach toward dynamic community detection. In: 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Vancouver, pp. 9–16. IEEE (2019). https://doi.org/10.1145/3341161.3342877

  30. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. ArXiv (2016)

    Google Scholar 

  31. Long, M., Johnson, D.D.: Graph convolutional networks for node classification and regression tasks. Neural Netw. (2018)

    Google Scholar 

  32. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  33. Chung, J., Gülçehre, Ç., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv (2014)

    Google Scholar 

  34. Huang, X., et al.: DGraph: a large-scale financial dataset for graph anomaly detection. In: Advances in Neural Information Processing Systems, vol. 35, pp. 22765–22777 (2022)

    Google Scholar 

  35. Newman, M.E.J., Leicht, E.A.: Detecting community structure in networks. Proc. Natl. Acad. Sci. 104(2), 836–841 (2007)

    Google Scholar 

  36. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666 (2008)

    Article  Google Scholar 

  37. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  38. Raghavan, U.N., Albert, R., Kumara, S.R.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76(3), 036106 (2007)

    Article  Google Scholar 

  39. Liu, F., Wu, J., Xue, S., Zhou, C., Yang, J., Sheng, Q.Z.: Detecting the evolving community structure in dynamic social networks. World Wide Web 23, 715–733 (2019)

    Article  Google Scholar 

  40. Appel, A.P., Cunha, R.L.F., Aggarwal, C.C., Terakado, M.M.: Temporally evolving community detection and prediction in content-centric networks. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS, vol. 11052, pp. 3–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation of China (62272311), National Key R & D Program of China (2018YFC0831005), Science and Technology Support project of Tianjin Eco-City of China (STCKJ2020-WRJ), and Finance science and technology project of the 12th Division of Xinjiang Construction Corps of China (SR202103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, K., Zhang, Z., Li, X. (2024). Research on Dynamic Community Detection Method Based on Multi-dimensional Feature Information of Community Network. In: Wang, Z., Tan, C.W. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14658. Springer, Singapore. https://doi.org/10.1007/978-981-97-2650-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2650-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2649-3

  • Online ISBN: 978-981-97-2650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics