Skip to main content

Strange Rhythms, Strange Objects

  • Chapter
  • First Online:
Rhythm in the Sky

Abstract

Advances in instrumentation have uncovered many new phenomena in the universe. Some have been found to repeat, either sporadically or with a more regular period. Many more are suspected to be actually repetitive; they appear as one-off events possibly due to the limitations of the period of observation. These include novae and fast radio bursts. Novae and X-ray bursts are believed to result from accretion in a binary system from a companion star onto a compact object like a white dwarf or a neutron star. Periodic oscillations are found to be associated with sporadic events like Type I X-ray bursts, though their origin is not understood. Fast radio bursts are of varied nature, indicating that origin of different classes may be different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Roche lobe is the region around a star in a binary system within which orbiting material is gravitationally bound to that star.

  2. 2.

    SN Ia occurs when the mass of the white dwarf crosses Chandrasekhar limit so that the electron degeneracy pressure can no longer sustain the star against collapse. This results in a violent explosion.

  3. 3.

    Because of the ionised component of interstellar medium, principally due to free electrons, high-frequency components of a radio pulse arrive earlier than the low-frequency components. DM can be estimated from measurement of this delay, and can give an idea of the distance of the source.

  4. 4.

    A neutron star with extremely strong magnetic field, of the order of \(10^9\)\(10^{11}\)T.

References

  1. Anupama GC (2008) One year of monitoring of the 2006 outburst in optical and low radio frequencies. In: Evans A, Bode MF, O’Brien TJ, Darnley MJ (eds) RS Ophiuchi (2006) the recurrent nova phenomenon, ASP conference series 401. ASP, San Francisco, p 31

    Google Scholar 

  2. Mukai K (2014) Recurrent novae - a review. Acta Polytechnica CTU Proc 2:246

    Article  ADS  Google Scholar 

  3. Darnley MJ (2019) Accrete, accrete, accrete ... bang! (and repeat): the remarkable recurrent novae. In: Proceedings of the golden age of cataclysmic variables and related objects V, proceedings of science, vol 368

    Google Scholar 

  4. Schaefer BE (2023) The recurrent nova T CrB had prior eruptions observed near December 1787 and October 1217 AD. J Hist Astron 54:436

    Article  Google Scholar 

  5. Evans A, Banerjee DPK, Woodward CE, Geballe TR, Gehrz RD, Page KL, Starrfield S (2023) Infrared spectroscopy of the 2022 eruption of the recurrent nova U Sco. MNRAS 522:4841

    Article  ADS  Google Scholar 

  6. Clark GW, Jernigan JG, Bradt H, Canizares C, Lewin WHG, Li FK, Mayer W, McClintock J, Schnopper H (1976) Recurrent brief X-ray bursts from the globular cluster NGC 6624. ApJ 207:L 015

    Google Scholar 

  7. Grindlay J, Gursky H, Schnopper H, Parsignault DR, Heise J, Brinkman AC, Schrijver J (1976) Discovery of intense X-ray bursts from the globular cluster NGC 6624. ApJ 205:L 127

    Google Scholar 

  8. Galloway DK, Keek L (2021) Thermonuclear X-ray bursts. In: Belloni TM, Méndez M, Zhang C, (eds) Timing neutron stars: pulsations, oscillations and explosions. Astrophysics and space science library, vol 461. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Galloway DK, in ’t Zand J, Chenevez J, Wörpel H, Keek L, Ootes L, Watts AL, Gisler L, Sanchez-Fernandez C, Kuulkers E (2020) The Multi-INstrument Burst ARchive (MINBAR. ApJS 249:32

    Google Scholar 

  10. Lahiri C, Gangopadhyay G (2012) Endpoint of rp process using relativistic mean field approach and a new mass formula. Int J Modern Phys E 21:1250074

    Article  ADS  Google Scholar 

  11. Strohmayer TE, Zhang W, Swank JH, Smale A, Titarchuk L (1996) Millisecond X-Ray variability from an accreting neutron star system. ApJ 469:L9

    Article  ADS  Google Scholar 

  12. Chakrabarty D, Morgan EH, Muno MP, Galloway DK, Wijnands R, ven der Klis M, Markwardt CB (2003) Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Nature 424:42

    Google Scholar 

  13. Watts AL (2012) Thermonuclear burst oscilations. Ann Rev Astron Astrophys 50:609

    Article  ADS  Google Scholar 

  14. Lewin WHG, Doty J, Clark GW, Rappaport SA, Bradt HVD, Doxsey R, Hearn DR, Hoffman JA, Jernigan JG, Li FK, Mayer W, McClintock J, Primini F, Richardson J (1976) The discovery of rapidly repetitive X-ray bursts from a new source in Scorpius. ApJ 207:L95

    Article  ADS  Google Scholar 

  15. van der Eijnden JJ, Bagnoli T, Degenaar N, Lohfink AM, Parker ML, in ’t Zand JJM, Fabian AC (2017) A strongly truncated inner accretion disk in the Rapid Burster. MNRAS 466:L98

    Google Scholar 

  16. Spruit HC, Tamm RE (1993) An instability associated with a magnetosphere-disk interaction. ApJ 402:593; D’Angelo CR, Spruit HC (2010) Episodic accretion on to strongly magnetic stars. MNRAS 406:1208

    Google Scholar 

  17. Degenaar N, Miller JM, Harrison FA, Kennea JA, Kouveliotou C, Younes G (2014) High-resolution X-Ray spectroscopy of the bursting pulsar GRO J1744–28. ApJL 796:L9

    Article  ADS  Google Scholar 

  18. Lorimer DR, Bailes M, Mclaughin MA, Narkevic DJ, Crawford F (2007) A bright millisecond radio burst of extragalactic origin. Science 318:777

    Article  ADS  Google Scholar 

  19. Scholz P, (on behallf of Chime/FRB) Collaboration (2020) A bright millisecond-timescale radio burst from the direction of the Galactic magnetar SGR 1935+2154. Astron Telegr, ATel # 13681

    Google Scholar 

  20. Petroff E, Hessels JWT, Lorimer DR (2019) Fast radio bursts. Astron Astrophys Rev 27:4

    Article  ADS  Google Scholar 

  21. Bannister KW et al (2017) The detection of an extremely bright fast radio burst in a phased array feed survey. ApJL 841:L 12

    Google Scholar 

  22. Spitler LG et al (2014) Fast radio burst discovered in the arecibo pulsar ALFA survey. ApJ 790:101

    Article  ADS  Google Scholar 

  23. Spitler LG et al (2016) A repeating fast radio burst. Nature 531:202

    Article  ADS  Google Scholar 

  24. Chatterjee S et al (2017) A direct localisation of a fast radio burst and its host. Nature 541:58

    Article  ADS  Google Scholar 

  25. Marcote B et al (2017) The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. ApJL 834:L8

    Article  ADS  Google Scholar 

  26. The CHIME/FRB Collaboration (2021) The first CHIME/FRB fast radio burst catalog. ApJS 257:59

    Article  ADS  Google Scholar 

  27. The CHIME/FRB Collaboration (2020) Periodic activity from a fast radio burst source. Nature 582:351

    Article  ADS  Google Scholar 

  28. Marcote B et al (2020) A repeating fast radio burst source localised to a nearby spiral galaxy. Nature 577:190

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Gangopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangopadhyay, G., Kundu, A. (2024). Strange Rhythms, Strange Objects. In: Rhythm in the Sky. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-2588-5_8

Download citation

Publish with us

Policies and ethics