Skip to main content

CoTE: A Flexible Method for Joint Learning of Topic and Embedding Models

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

The topic and embedding models are two of the most popular categories of techniques to learn the latent semantics from text. In the topic models, each word is generated according to its global context; while in the embedding models, each word occurrence is measured by surrounding words. Thus it is expected to train the topic and embedding models jointly by utilizing multi-context information to learn better representations. In this paper, we propose a flexible method named CoTE to achieve this goal, which can integrate a variety of the topic and embedding models together. And we design a general 3-stage learning procedure to optimize the parameters of CoTE, which adopts a rotation optimization scheme. We chose and combined two groups of the de-facto topic and embedding models to implement the CoTE-PD and CoTE-LW algorithms. Experimental results show that CoTE achieves accuracy improvements in both individual components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/AKSW/Palmetto.

References

  1. Aletras, N., Stevenson, M.: Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013), pp. 13–22 (2013)

    Google Scholar 

  2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  4. Das, R., Zaheer, M., Dyer, C.: Gaussian LDA for topic models with word embeddings. In: Proceedings of the 53nd Annual Meeting of the Association for Computational Linguistics (2015)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Dieng, A.B., Ruiz, F.J., Blei, D.M.: Topic modeling in embedding spaces. Trans. Assoc. Comput. Linguist. 8, 439–453 (2020)

    Article  Google Scholar 

  7. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, pp. 50–57. ACM, New York (1999)

    Google Scholar 

  8. Jiang, D., Shi, L., Lian, R., Wu, H.: Latent topic embedding. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics, pp. 2689–2698. The COLING 2016 Organizing Committee (2016)

    Google Scholar 

  9. Keya, K.N., Papanikolaou, Y., Foulds, J.R.: Neural embedding allocation: distributed representations of topic models. Comput. Linguist. 48(4), 1021–1052 (2022)

    Article  Google Scholar 

  10. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  11. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, vol. 14, pp. 1188–1196 (2014)

    Google Scholar 

  12. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2177–2185. Curran Associates, Inc. (2014)

    Google Scholar 

  13. Li, S., Chua, T.S., Zhu, J., Miao, C.: Generative topic embedding: a continuous representation of documents. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 666–675. Association for Computational Linguistics (2016)

    Google Scholar 

  14. Li, X., Chi, J., Li, C., Ouyang, J., Fu, B.: Integrating topic modeling with word embeddings by mixtures of vMFs. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 151–160. The COLING 2016 Organizing Committee (2016)

    Google Scholar 

  15. Liu, Y., Liu, Z., Chua, T.S., Sun, M.: Topical word embeddings. In: AAAI, pp. 2418–2424 (2015)

    Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2012)

    Google Scholar 

  18. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (WSDM 2015), pp. 399–408 (2015). https://doi.org/10.1145/2684822.2685324

  19. Shi, B., Lam, W., Jameel, S., Schockaert, S., Lai, K.P.: Jointly learning word embeddings and latent topics. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 375–384 (2017)

    Google Scholar 

  20. Vorontsov, K., Potapenko, A.: Additive regularization of topic models. Mach. Learn. (2014)

    Google Scholar 

  21. word2vec (2013). https://code.google.com/archive/p/word2vec/

  22. Xu, H., Wang, W., Liu, W., Carin, L.: Distilled Wasserstein learning for word embedding and topic modeling. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Xun, G., Li, Y., Zhao, W.X., Gao, J., Zhang, A.: A correlated topic model using word embeddings. In: IJCAI, vol. 17, pp. 4207–4213 (2017)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (No. U181461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, B., Yuan, C., Huang, Y. (2024). CoTE: A Flexible Method for Joint Learning of Topic and Embedding Models. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics