Skip to main content

Fine-Grained Category Generation for Sets of Entities

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Category systems play an essential role in knowledge bases by groupings of semantically related entities. Category generation task aims to produce category suggestions which can help knowledge editors to expand a category system. Most past research has focused on solving coarse-grained problems, not fine-grained scenarios. In this paper, we propose a two-stage framework to generate fine-grained categories for sets of entities. In the category generation stage, we extract conceptual texts from the context of entities and then employ the Seq2Seq model to generate candidate categories. In the category selection stage, we cluster the entities and design discrete patterns using entity names for prompt ranking, which are further ensembled to preserve the final categories. We construct a new fine-grained category generation dataset based on Wikipedia. Experimental results demonstrate the effectiveness of the framework over the state-of-the-art abstractive summarization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the experiment, the best result is achieved on 0.15.

  2. 2.

    We determined a threshold of 0.85 which provided the best result.

  3. 3.

    https://www.wikipedia.org/.

  4. 4.

    https://github.com/abisee/pointer-generator.

  5. 5.

    https://github.com/tshi04/NATS.

  6. 6.

    https://huggingface.co/.

  7. 7.

    We calculate text similarity by using SequenceMatcher.ratio(). Prec@1 and Prec@5 indicate whether the top1 and top5 results include a ratio value of 1. Dist@1 and Dist@5 indicate the largest ratio among the top1 and top5 results.

References

  1. Aiken, E.G., Thomas, G.S., Shennum, W.A.: Memory for a lecture: effects of notes, lecture rate, and informational density. J. Educ. Psychol. 67(3), 439 (1975)

    Article  Google Scholar 

  2. Ben-David, E., Oved, N., Reichart, R.: Pada: a prompt-based autoregressive approach for adaptation to unseen domains. arXiv preprint arXiv:2102.12206 (2021)

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Carlsson, F., Öhman, J., Liu, F., Verlinden, S., Nivre, J., Sahlgren, M.: Fine-grained controllable text generation using non-residual prompting. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6837–6857 (2022)

    Google Scholar 

  5. Choi, E., Levy, O., Choi, Y., Zettlemoyer, L.: Ultra-fine entity typing. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 87–96 (2018)

    Google Scholar 

  6. Ding, N., et al.: Prompt-learning for fine-grained entity typing. arXiv preprint arXiv:2108.10604 (2021)

  7. Han, X., et al.: Cross-lingual contrastive learning for fine-grained entity typing for low-resource languages. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2241–2250 (2022)

    Google Scholar 

  8. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stati.) 28(1), 100–108 (1979)

    Google Scholar 

  9. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: COLING 1992 Volume 2: The 14th International Conference on Computational Linguistics (1992)

    Google Scholar 

  10. Jelinek, F., Mercer, R.L., Bahl, L.R., Baker, J.K.: Perplexity-a measure of the difficulty of speech recognition tasks. J. Acoust. Soc. Am. 62(S1), S63–S63 (1977)

    Article  Google Scholar 

  11. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  12. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059 (2021)

    Google Scholar 

  13. Lewis, M., et al.: Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880 (2020)

    Google Scholar 

  14. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  15. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  16. Liu, X., et al.: GPT understands, too. arXiv preprint arXiv:2103.10385 (2021)

  17. Liu, Y., Shen, S., Lapata, M.: Noisy self-knowledge distillation for text summarization. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 692–703 (2021)

    Google Scholar 

  18. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6, 39501–39514 (2018)

    Article  Google Scholar 

  19. Mota, T., Sridharan, M.: Commonsense reasoning and knowledge acquisition to guide deep learning on robots. In: Robotics: Science and Systems (2019)

    Google Scholar 

  20. Obeidat, R., Fern, X., Shahbazi, H., Tadepalli, P.: Description-based zero-shot fine-grained entity typing. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 807–814 (2019)

    Google Scholar 

  21. Pang, K., Zhang, H., Zhou, J., Wang, T.: Divide and denoise: learning from noisy labels in fine-grained entity typing with cluster-wise loss correction. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1997–2006 (2022)

    Google Scholar 

  22. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  23. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

    MathSciNet  Google Scholar 

  24. Reddy, D.R., et al.: Speech understanding systems: a summary of results of the five-year research effort. Department of Computer Science. Camegie-Mell University, Pittsburgh, PA, vol. 17, p. 138 (1977)

    Google Scholar 

  25. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  26. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083 (2017)

    Google Scholar 

  27. Shen, J., Wu, Z., Lei, D., Shang, J., Ren, X., Han, J.: Setexpan: corpus-based set expansion via context feature selection and rank ensemble. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Dzeroski, S. (eds.) Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 288–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_18

    Chapter  Google Scholar 

  28. Shi, T., Keneshloo, Y., Ramakrishnan, N., Reddy, C.K.: Neural abstractive text summarization with sequence-to-sequence models. ACM Trans. Data Sci. 2(1), 1–37 (2021)

    Article  Google Scholar 

  29. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: eliciting knowledge from language models with automatically generated prompts. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4222–4235 (2020)

    Google Scholar 

  30. Shleifer, S., Rush, A.M.: Pre-trained summarization distillation. arXiv preprint arXiv:2010.13002 (2020)

  31. Wallace, E., Feng, S., Kandpal, N., Gardner, M., Singh, S.: Universal adversarial triggers for attacking and analyzing NLP. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2153–2162 (2019)

    Google Scholar 

  32. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: Pegasus: pre-training with extracted gap-sentences for abstractive summarization. In: International Conference on Machine Learning, pp. 11328–11339. PMLR (2020)

    Google Scholar 

  33. Zhang, S., Balog, K., Callan, J.: Generating categories for sets of entities. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1833–1842 (2020)

    Google Scholar 

  34. Zhang, Y., Shen, J., Shang, J., Han, J.: Empower entity set expansion via language model probing. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8151–8160 (2020)

    Google Scholar 

  35. Zhou, B., Khashabi, D., Tsai, C.T., Roth, D.: Zero-shot open entity typing as type-compatible grounding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2065–2076 (2018)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Key R &D Program of China (2020AAA0105203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Y., Yu, J., Wan, J., Xu, J., Hou, L. (2024). Fine-Grained Category Generation for Sets of Entities. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics