Skip to main content

A Novel Causal Discovery Model for Recommendation System

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14334))

  • 32 Accesses

Abstract

The recommendation system is now playing a more and more important role in our daily life. Recently, some scholars proposed that human behavior is governed by a complex web of causal models, and causal relationships are crucial in the recommendation process. Unfortunately, existing methods are limited in their ability to uncover hidden causal relationships because they may generate false causal relationships, which limits their recommendation performance. To address this issue, we propose a new recommendation model that leverages the causal relationship recommendation model and integrates a causal discovery module into the recommendation process. In this way, we can capture accurately the causal relationships underlying user behavior and generate more targeted recommendations. By fitting actual user behavior data, we can learn a cause-and-effect diagram that accurately reflects the real-world dynamics of the system. Extensive experiments conducted on two real-world datasets demonstrate that our method significantly outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: RecSys 2017, pp. 42–46 (2017)

    Google Scholar 

  2. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: RecSys 2018, pp. 104–112 (2018)

    Google Scholar 

  3. Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., Drouin, A.: Differentiable causal discovery from interventional data. Adv. Neural. Inf. Process. Syst. 33, 21865–21877 (2020)

    Google Scholar 

  4. Chen, E.Y.J., Shen, Y., Choi, A., Darwiche, A.: Learning bayesian networks with ancestral constraints. Adv. Neural Inf. Process. Syst. 29, 1–9 (2016)

    Google Scholar 

  5. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Min. Knowl. Disc. 22, 106–148 (2011)

    Article  MathSciNet  Google Scholar 

  6. Gao, Y., Shen, L., Xia, S.T.: DAG-GAN: causal structure learning with generative adversarial nets. In: ICASSP 2021, pp. 3320–3324. IEEE (2021)

    Google Scholar 

  7. Geng, C., Wu, H., Fang, H.: Causality and correlation graph modeling for effective and explainable session-based recommendation. arXiv preprint arXiv:2201.10782 (2022)

  8. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW 2017, pp. 173–182 (2017)

    Google Scholar 

  9. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  10. Jenkins, J.M., Astington, J.W.: Theory of mind and social behavior: causal models tested in a longitudinal study. Merrill-Palmer Q. (1982-), 203–220 (2000)

    Google Scholar 

  11. Joachims, T., Swaminathan, A., Schnabel, T.: Unbiased learning-to-rank with biased feedback. In: WSDM 2017, pp. 781–789 (2017)

    Google Scholar 

  12. Koivisto, M., Sood, K.: Exact bayesian structure discovery in bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)

    MathSciNet  Google Scholar 

  13. Kyono, T., Zhang, Y., van der Schaar, M.: Castle: regularization via auxiliary causal graph discovery. Adv. Neural. Inf. Process. Syst. 33, 1501–1512 (2020)

    Google Scholar 

  14. Mooij, J.M., Magliacane, S., Claassen, T.: Joint causal inference from multiple contexts. J. Mach. Learn. Res. 21(1), 3919–4026 (2020)

    MathSciNet  Google Scholar 

  15. Musto, C.: Enhanced vector space models for content-based recommender systems. In: RecSys 2010, pp. 361–364 (2010)

    Google Scholar 

  16. Ng, I., Zhu, S., Chen, Z., Fang, Z.: A graph autoencoder approach to causal structure learning. arXiv preprint arXiv:1911.07420 (2019)

  17. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  18. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  19. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: debiasing learning and evaluation. In: ICML, pp. 1670–1679. PMLR (2016)

    Google Scholar 

  20. Tan, J., et al.: Learning and evaluating graph neural network explanations based on counterfactual and factual reasoning. In: WWW 2022, pp. 1018–1027 (2022)

    Google Scholar 

  21. Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., Zhang, Y.: Counterfactual explainable recommendation. In: CIKM 2021, pp. 1784–1793 (2021)

    Google Scholar 

  22. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006)

    Article  Google Scholar 

  23. Wang, Z., Chen, X., Dong, Z., Dai, Q., Wen, J.R.: Sequential recommendation with causal behavior discovery. arXiv preprint arXiv:2204.00216 (2022)

  24. Wang, Z., et al.: Counterfactual data-augmented sequential recommendation. In: SIGIR 2021, pp. 347–356 (2021)

    Google Scholar 

  25. Wei, T., Feng, F., Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In: KDD 2021, pp. 1791–1800 (2021)

    Google Scholar 

  26. Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., Tan, T.: TAGNN: target attentive graph neural networks for session-based recommendation. In: SIGIR 2020, pp. 1921–1924 (2020)

    Google Scholar 

  27. Yu, Y., Chen, J., Gao, T., Yu, M.: DAG-GNN: dag structure learning with graph neural networks. In: ICML, pp. 7154–7163. PMLR (2019)

    Google Scholar 

  28. Zhang, S., Yao, D., Zhao, Z., Chua, T., Wu, F.C.: Counterfactual user sequence synthesis for sequential recommendation. In: SIGIR 2021 (2021)

    Google Scholar 

  29. Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: Dags with no tears: continuous optimization for structure learning. Adv. Neural Inf. Process. Syst. 31, 1–12 (2018)

    Google Scholar 

  30. Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and conformity for recommendation with causal embedding. In: ACM Web Conference, pp. 2980–2991 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Science and Technology Commission (No. 22YF1401100), Fundamental Research Funds for the Central Universities (No. 22D111210, 23D111204), and National Science Fund for Young Scholars (No. 62202095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, G., Hua, H., Lu, J., Fang, X. (2024). A Novel Causal Discovery Model for Recommendation System. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics