Skip to main content

PERTAD: Towards Pseudo Verification for Anomaly Detection in Partially Labeled Graphs

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

The graph-based anomaly detection task aims to identify nodes with patterns that deviate from those of the majority nodes in a large graph, where only a limited subset of nodes is annotated. However, inadequate supervised knowledge and uncertainty of anomalous structure restrict the performance of detection. In this paper, we propose PERTAD (Pseudo VERificaTion for Anomaly Detection), a novel semi-supervised learning method for detecting anomalies in partially labeled graphs. Specifically, we first propose a self-verification framework that comprises a target network (T-model) and a verification network (V-model). The framework employs pseudo-labeled graphs to transfer the knowledge learned by T-model to V-model, and then corrects T-model with the performance error between the two networks on the labeled set. Furthermore, we introduce a layer-level aggregation mechanism for node representation in deep GNNs to address the uncertainty of anomalous structures. The proposed mechanism re-aggregates neighborhood information across layers, aiming to preserve low-order neighborhood characteristics and alleviate the over-smoothing effect. Extensive experiments on real-world graph-based anomaly detection tasks demonstrate that PERTAD significantly outperforms state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/dmlc/dgl.

  2. 2.

    https://github.com/safe-graph/DGFraud-TF2.

References

  1. Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting pseudo-labeling for semi-supervised learning. In: AAAI, pp. 6912–6920 (2021)

    Google Scholar 

  2. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: CVPR, pp. 4091–4101 (2021)

    Google Scholar 

  3. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: SIAM, pp. 594–602 (2019)

    Google Scholar 

  4. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: CIKM (2020)

    Google Scholar 

  5. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, pp. 1024–1034 (2017)

    Google Scholar 

  6. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Automatically discovering and learning new visual categories with ranking statistics. In: ICLR (2019)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  9. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: Rev2: fraudulent user prediction in rating platforms. In: WSDM (2018)

    Google Scholar 

  10. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: SIGKDD, pp. 1269–1278 (2019)

    Google Scholar 

  11. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML, p. 896 (2013)

    Google Scholar 

  12. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: SIGKDD, pp. 338–348 (2020)

    Google Scholar 

  13. Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for fraud detection. In: WWW 2021: Proceedings of the Web Conference 2021, pp. 3168–3177 (2021)

    Google Scholar 

  14. Liu, Z., Dou, Y., Yu, P.S., Deng, Y., Peng, H.: Alleviating the inconsistency problem of applying graph neural network to fraud detection. In: SIGIR (2020)

    Google Scholar 

  15. Liu, Z., et al.: GeniePath: graph neural networks with adaptive receptive paths. In: AAAI, pp. 4424–4431 (2019)

    Google Scholar 

  16. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In: CIKM, pp. 2077–2085 (2018)

    Google Scholar 

  17. Lokhande, V.S., Tasneeyapant, S., Venkatesh, A., Ravi, S.N., Singh, V.: Generating accurate pseudo-labels in semi-supervised learning and avoiding overconfident predictions via hermite polynomial activations. In: CVPR, pp. 11435–11443 (2020)

    Google Scholar 

  18. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: CVPR (2021)

    Google Scholar 

  19. RoyChowdhury, A., et al.: Automatic adaptation of object detectors to new domains using self-training. In: CVPR, pp. 780–790 (2019)

    Google Scholar 

  20. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS, pp. 596–608 (2020)

    Google Scholar 

  21. Tang, J., Li, J., Gao, Z., Li, J.: Rethinking graph neural networks for anomaly detection. In: ICML, pp. 21076–21089 (2022)

    Google Scholar 

  22. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  23. Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: ICDM, pp. 598–607 (2019)

    Google Scholar 

  24. Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., Chen, H.: Decoupling representation learning and classification for GNN-based anomaly detection. In: SIGIR (2021)

    Google Scholar 

  25. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: NeurIPS, pp. 6256–6268 (2020)

    Google Scholar 

  26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks. In: ICLR (2019)

    Google Scholar 

  27. Zhang, X., Ge, Y., Qiao, Y., Li, H.: Refining pseudo labels with clustering consensus over generations for unsupervised object re-identification. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgment

This research is supported by a grant from the National Key Research and Development Program of China (No. 2022YFF0711801), the National Natural Science Foundation of China (Grant No. J2224012) and the CAS 145 Informatization Project CAS-WX2022GC-0301. Jianjun Yu is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, W., Yu, J., Zhou, X. (2024). PERTAD: Towards Pseudo Verification for Anomaly Detection in Partially Labeled Graphs. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics