Skip to main content

Lifelong Hierarchical Topic Modeling via Non-negative Matrix Factorization

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Hierarchical topic modeling has been widely used in mining the latent topic hierarchy of documents. However, most of such models are limited to a one-shot scenario since they do not use the identified topic information to guide the subsequent mining of topics. By storing and exploiting the previous knowledge, we propose a lifelong hierarchical topic model based on Non-negative Matrix Factorization (NMF) for boosting the topic quality over a text stream. In particular, we construct a knowledge graph by the accumulated topic hierarchy information and use the knowledge graph to guide the training of our model on future documents. Moreover, the structure information in the knowledge graph is completed by supervised learning. Experiments on real-world corpora validate the effectiveness of our approach on lifelong learning paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that several dummy root topics were used in the original CluHTM. However, we experimentally observed that such a model quite concentrated on a few topics, especially for a relatively small corpus. To achieve a reasonable topic structure in lifelong learning paradigms, we discard such dummy root topics.

References

  1. Ahmed, A., Hong, L., Smola, A.: Nested Chinese restaurant franchise process: applications to user tracking and document modeling. In: ICML, pp. 1426–1434 (2013)

    Google Scholar 

  2. Alvarez-Melis, D., Jaakkola, T.S.: Tree-structured decoding with doubly-recurrent neural networks. In: ICLR (2017)

    Google Scholar 

  3. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1), 5–43 (2003)

    Article  Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  5. Card, D., Tan, C., Smith, N.A.: Neural models for documents with metadata. In: ACL, pp. 2031–2040 (2018)

    Google Scholar 

  6. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr, E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: WSDM, pp. 101–110 (2010)

    Google Scholar 

  7. Chen, X.: Learning with sparsity: Structures, optimization and applications. Ph.D. thesis, Carnegie Mellon University (2013)

    Google Scholar 

  8. Chen, Y., Wu, J., Lin, J., Liu, R., Zhang, H., Ye, Z.: Affinity regularized non-negative matrix factorization for lifelong topic modeling. IEEE Trans. Knowl. Data Eng. 32(7), 1249–1262 (2020)

    Article  Google Scholar 

  9. Chen, Y., Zhang, H., Wu, J., Wang, X., Liu, R., Lin, M.: Modeling emerging, evolving and fading topics using dynamic soft orthogonal NMF with sparse representation. In: ICDM, pp. 61–70 (2015)

    Google Scholar 

  10. Chen, Z., Liu, B.: Topic modeling using topics from many domains, lifelong learning and big data. In: ICML. vol. 32, pp. 703–711 (2014)

    Google Scholar 

  11. Chen, Z., Ma, N., Liu, B.: Lifelong learning for sentiment classification. arXiv preprint arXiv:1801.02808 (2018)

  12. Chen, Z., Ding, C., Zhang, Z., Rao, Y., Xie, H.: Tree-structured topic modeling with nonparametric neural variational inference. In: ACL/IJCNLP, pp. 2343–2353 (2021)

    Google Scholar 

  13. Choo, J., Lee, C., Reddy, C.K., Park, H.: Weakly supervised nonnegative matrix factorization for user-driven clustering. Data Min. Knowl. Discov. 29(6), 1598–1621 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dai, L., Zhu, R., Wang, J.: Joint nonnegative matrix factorization based on sparse and graph laplacian regularization for clustering and co-differential expression genes analysis. Complex. 2020, 3917812:1–3917812:10 (2020)

    Google Scholar 

  15. Duan, Z., et al.: Sawtooth factorial topic embeddings guided gamma belief network. In: ICML, pp. 2903–2913 (2021)

    Google Scholar 

  16. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS, vol. 15, pp. 315–323 (2011)

    Google Scholar 

  17. Greene, D., O’Callaghan, D., Cunningham, P.: How many topics? stability analysis for topic models. In: ECML/PKDD, vol. 8724, pp. 498–513 (2014)

    Google Scholar 

  18. Griffiths, T., Jordan, M., Tenenbaum, J., Blei, D.: Hierarchical topic models and the nested Chinese restaurant process. In: NIPS, vol. 16, pp. 17–24 (2003)

    Google Scholar 

  19. Gupta, P., Chaudhary, Y., Runkler, T.A., Schütze, H.: Neural topic modeling with continual lifelong learning. In: ICML, vol. 119, pp. 3907–3917 (2020)

    Google Scholar 

  20. Isonuma, M., Mori, J., Bollegala, D., Sakata, I.: Tree-structured neural topic model. In: ACL, pp. 800–806 (2020)

    Google Scholar 

  21. Kim, J.H., Kim, D., Kim, S., Oh, A.: Modeling topic hierarchies with the recursive Chinese restaurant process. In: CIKM, pp. 783–792 (2012)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  24. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. CoRR abs/1612.00796 (2016)

    Google Scholar 

  25. Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: EACL, pp. 530–539 (2014)

    Google Scholar 

  26. Lee, D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS. vol. 13, pp. 556–562 (2000)

    Google Scholar 

  27. Lin, T., Hu, Z., Guo, X.: Sparsemax and relaxed wasserstein for topic sparsity. In: WSDM, pp. 141–149 (2019)

    Google Scholar 

  28. Liu, R., Wang, X., Wang, D., Zuo, Y., Zhang, H., Zheng, X.: Topic splitting: a hierarchical topic model based on non-negative matrix factorization. J. Syst. Sci. Syst. Eng. 27(4), 479–496 (2018)

    Article  Google Scholar 

  29. Miao, Y., Grefenstette, E., Blunsom, P.: Discovering discrete latent topics with neural variational inference. In: ICML, pp. 2410–2419 (2017)

    Google Scholar 

  30. Mimno, D., Li, W., McCallum, A.: Mixtures of hierarchical topics with pachinko allocation. In: ICML, pp. 633–640 (2007)

    Google Scholar 

  31. Ming, Z.Y., Wang, K., Chua, T.S.: Prototype hierarchy based clustering for the categorization and navigation of web collections. In: SIGIR, pp. 2–9 (2010)

    Google Scholar 

  32. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)

    Article  Google Scholar 

  33. Paisley, J.W., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2015)

    Article  Google Scholar 

  34. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  35. Qin, X., Lu, Y., Chen, Y., Rao, Y.: Lifelong learning of topics and domain-specific word embeddings. In: ACL/IJCNLP (Findings), pp. 2294–2309 (2021)

    Google Scholar 

  36. Rohe, K., Qin, T., Yu, B.: Co-clustering directed graphs to discover asymmetries and directional communities. PNAS 113(45), 12679–12684 (2016)

    Article  MathSciNet  Google Scholar 

  37. Sethuraman, J.: A constructive definition of dirichlet priors. Statistica Sinica 639–650 (1994)

    Google Scholar 

  38. Silver, D.L.: Machine lifelong learning: challenges and benefits for artificial general intelligence. In: AGI, vol. 6830, pp. 370–375 (2011)

    Google Scholar 

  39. Tan, C., Card, D., Smith, N.A.: Friendships, rivalries, and trysts: characterizing relations between ideas in texts. In: ACL, pp. 773–783 (2017)

    Google Scholar 

  40. Teh, Y., Jordan, M., Beal, M., Blei, D.: Sharing clusters among related groups: hierarchical dirichlet processes. In: NIPS, vol. 17, pp. 1385–1392 (2004)

    Google Scholar 

  41. Viegas, F., et al.: Cluwords: exploiting semantic word clustering representation for enhanced topic modeling. In: WSDM, pp. 753–761 (2019)

    Google Scholar 

  42. Viegas, F., Cunha, W., Gomes, C., Pereira, A., Rocha, L., Goncalves, M.: Cluhtm-semantic hierarchical topic modeling based on cluwords. In: ACL, pp. 8138–8150 (2020)

    Google Scholar 

  43. Wu, J., et al.: Neural mixed counting models for dispersed topic discovery. In: ACL, pp. 6159–6169 (2020)

    Google Scholar 

  44. Xu, Z., Chang, X., Xu, F., Zhang, H.: L\({}_{\text{1/2 }}\) regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Networks Learn. Syst. 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  45. Zhao, H., Phung, D., Huynh, V., Le, T., Buntine, W.L.: Neural topic model via optimal transport. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (61972426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghui Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z., Yan, J., Lei, Z., Rao, Y. (2024). Lifelong Hierarchical Topic Modeling via Non-negative Matrix Factorization. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics