Skip to main content

Ultra-DPC: Ultra-scalable and Index-Free Density Peak Clustering

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Density-based clustering is a fundamental and effective tool for recognizing connectivity structure. The density peak, the data object with the maximum density within a predefined sphere, plays a critical role. However, Density Peak Estimation (DPE), the process of identifying the nearest denser relation for each data object, is extremely expensive. The state-of-the-art accelerating solutions that utilize the index are still resource-consuming for large-scale data. In this work, we propose Ultra-DPC, an ultra-scalable and index-free Density Peak Clustering for Euclidean space, to address the challenges above.

We theoretically study the correlation between two seemly different clustering algorithms: p-means and density-based clustering, and provide a novel p-means density estimator. Based on this, first, p-means is used on a set of samples S to find a set of p Local Density Peaks (LDP), where \(p \ll N\), and N is the number of data objects. Second, so as an informative LDP-wise affinity graph is conducted, and then it is enriched by a Random Walk process to incorporate the clues from the non-LDP objects. Third, the importance of LDP is estimated and the most important ones are chosen as the seeds. Finally, the class memberships of the remaining objects are determined according to their relations to the LDP. Ultra-DPC is the fastest DPE method but without reducing the quality of clustering. The evaluation of different medium- and large-scale datasets demonstrates both the efficiency and effectiveness of Ultra-DPC over the state-of-the-art density-based methods.

L. Ma and G. Yang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/maluyao17/Ultra-DPC.

References

  1. Barnes, G., Feige, U.: Short random walks on graphs. In: STOC, pp. 728–737. ACM (1993)

    Google Scholar 

  2. Brakensiek, J., Guruswami, V.: Bridging between 0/1 and linear programming via random walks. In: STOC, pp. 568–577. ACM (2019)

    Google Scholar 

  3. Chan, T.H., Guerquin, A., Hu, S., Sozio, M.: Fully dynamic k-center clustering with improved memory efficiency. IEEE Trans. Knowl. Data Eng. 34(7), 3255–3266 (2022)

    Google Scholar 

  4. Chen, X., Cai, D.: Large scale spectral clustering with landmark-based representation. In: AAAI. AAAI Press (2011)

    Google Scholar 

  5. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  6. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: IJCNN, pp. 2921–2926. IEEE (2017)

    Google Scholar 

  7. Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl. Based Syst. 99, 135–145 (2016)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  9. Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recognit. 39(5), 761–775 (2006)

    Article  Google Scholar 

  10. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    Google Scholar 

  11. Hastie, T., Friedman, J.H., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, Cham (2001). https://doi.org/10.1007/978-0-387-84858-7

  12. Huang, D., Wang, C., Peng, H., Lai, J., Kwoh, C.: Enhanced ensemble clustering via fast propagation of cluster-wise similarities. IEEE TSMC. Syst. 51(1), 508–520 (2021)

    Google Scholar 

  13. Huang, D., Wang, C., Wu, J., Lai, J., Kwoh, C.: Ultra-scalable spectral clustering and ensemble clustering. TKDE 32(6), 1212–1226 (2020)

    Google Scholar 

  14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  15. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  16. Jiang, H., Jang, J., Kpotufe, S.: Quickshift++: Provably good initializations for sample-based mean shift. In: ICML, vol. 80, pp. 2299–2308. PMLR (2018)

    Google Scholar 

  17. Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2017)

    Article  Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Liu, B., Bai, B., Xie, W., Guo, Y., Chen, H.: Task-optimized user clustering based on mobile app usage for cold-start recommendations. In: KDD, pp. 3347–3356. ACM (2022)

    Google Scholar 

  20. Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)

    Article  MathSciNet  Google Scholar 

  21. Loosli, G., Canu, S., Bottou, L.: Training invariant support vector machines using selective sampling. In: Large Scale Kernel Machines, vol. 2 (2007)

    Google Scholar 

  22. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  23. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection for dimension reduction. CoRR abs/1802.03426 (2018)

    Google Scholar 

  24. Mohan, M., Monteleoni, C.: Beyond the nyström approximation: speeding up spectral clustering using uniform sampling and weighted kernel k-means. In: IJCAI (2017)

    Google Scholar 

  25. Najafi, M., He, L., Yu, P.S.: Outlier-robust multi-view subspace clustering with prior constraints. In: ICDM, pp. 439–448. IEEE (2021)

    Google Scholar 

  26. Nguyen, X.V., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  Google Scholar 

  27. Paudel, B., Bernstein, A.: Random walks with erasure: diversifying personalized recommendations on social and information networks. In: WWW, pp. 2046–2057. ACM (2021)

    Google Scholar 

  28. Rasool, Z., Zhou, R., Chen, L., Liu, C., Xu, J.: Index-based solutions for efficient density peak clustering. IEEE Trans. Knowl. Data Eng. 34(5), 2212–2226 (2022)

    Article  Google Scholar 

  29. Rice, J.A.: Mathematical statistics and data analysis. Cengage Learning (2006)

    Google Scholar 

  30. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  31. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  32. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_52

    Chapter  Google Scholar 

  33. Yang, G., et al.: Litewsec: a lightweight framework for web-scale spectral ensemble clustering. In: TKDE, pp. 1–12 (2023)

    Google Scholar 

  34. Yang, G., Deng, S., Yang, Y., Gong, Z., Chen, X., Hao, Z.: LiteWSC: a lightweight framework for web-scale spectral clustering. In: Bhattacharya, A., et al. (eds.) DASFAA. LNCS, vol. 13246, pp. 556–573. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_40

    Chapter  Google Scholar 

  35. Yang, G., et al.: RESKM: a general framework to accelerate large-scale spectral clustering. Pattern Recogn. 137, 109275 (2022)

    Article  Google Scholar 

  36. Yang, G., Lv, H., Yang, Y., Gong, Z., Chen, X., Hao, Z.: FastDEC: clustering by fast dominance estimation. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) ECML-PKDD. LNCS, vol. 13713. Springer, Cham (2022)

    Google Scholar 

  37. Yang, Y., et al.: Graphlshc: towards large scale spectral hypergraph clustering. Inf. Sci. 544, 117–134 (2021)

    Google Scholar 

  38. Zheng, X., Ren, C., Yang, Y., Gong, Z., Chen, X., Hao, Z.: QuickDSC: clustering by quick density subgraph estimation. Inf. Sci. 581, 403–427 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key D&R Program of China (2019YFB1600704, 2021ZD0111501), NSFC (61603101, 61876043, 61976052, 71702065), NSF of Guangdong Province (2021A1515011941), State’s Key Project of Research and Development Plan (2019YFE0196400), NSF for Excellent Young Scholars (62122022), Guangzhou STIC (EF005/FST-GZG/2019/GSTIC), NSFC & Guangdong Joint Fund (U1501254), the Science and Technology Development Fund, Macau SAR (0068/2020/AGJ, SKL-IOTSC(UM)-2021–2023, GDST (2020B1212030003), MYRG2022-00192-FST, Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen (B10120210117-OF09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyang Yang or Zhiguo Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L., Yang, G., Chen, X., Yang, Y., Gong, Z., Hao, Z. (2024). Ultra-DPC: Ultra-scalable and Index-Free Density Peak Clustering. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics