Skip to main content

YOLO-SA: An Efficient Object Detection Model Based on Self-attention Mechanism

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Object detector based on CNN structure has been widely used in object detection, object classification and other tasks. The traditional CNN module usually adopts complex multi-branch design, which reduces the reasoning speed and memory utilization. Moreover, in many works, attention mechanism is usually added to the object detector to extract rich features in spatial information, which are usually used as additional modules of convolution without fundamental improvement from the limitations of convolution operation. Finally, traditional object detectors often have coupled detection heads, which can compromise model performance. To solve the above problems, we propose a new object detection model, YOLO-SA, based on the current popular object detector model YOLOv5. We introduce a new reparameterized module RepVGG to replace the original DarkNet53 structure of YOLOv5 model, which greatly reduces the complexity of the model and improves the detection accuracy. We introduce a self-attention mechanism module in the feature fusion part of the model, which is independent from other convolutional layers and has higher performance than other mainstream attention mechanism modules. We replace the coupled detection head in YOLOv5 model with an anchor-based decoupled detection head, which greatly improved the convergence speed in the training process. Experiments show that the detection accuracy of the YOLO-SA model proposed by us reaches 71.2% and 75.8% on COCO2014 and VOC2012 dataset respectively, which is superior to the YOLOv5s model as the baseline and other mainstream object detection models, showing certain superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems (2012)

    Google Scholar 

  4. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  5. Simonyan: Very deep convolutional networks for large-scale image recognition. (No Title) (2015)

    Google Scholar 

  6. Szegedy, C., et al.: Going deeper with convolutions (2023)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Cornell University - arXiv (2015)

    Google Scholar 

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. Computer Vision and Pattern Recognition. arxiv (2016)

    Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2014)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. Computer Vision and Pattern Recognition. arxiv (2015)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Cornell University - arXiv (2015)

    Google Scholar 

  12. Redmon, J., Divvala, S.K., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. Computer Vision and Pattern Recognition. arxiv (2018)

    Google Scholar 

  15. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. Computer Vision and Pattern Recognition. arxiv (2020)

    Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  18. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. arxiv (2019)

    Google Scholar 

  19. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021 (2021)

    Google Scholar 

  20. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  21. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. Cornell University - arXiv (2021)

    Google Scholar 

  22. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. Computer Vision and Pattern Recognition. arxiv (2018)

    Google Scholar 

  23. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. Computer Vision and Pattern Recognition. arxiv (2018)

    Google Scholar 

  24. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. Cornell University - arXiv (2019)

    Google Scholar 

  25. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. Computer Vision and Pattern Recognition. arxiv (2019)

    Google Scholar 

  26. Song, G., Liu, Y., Wang, X.: Revisiting the sibling head in object detector. Cornell University - arXiv (2020)

    Google Scholar 

  27. Wu, Y., et al.: Rethinking classification and localization for object detection. Cornell University - arXiv (2020)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. Cornell University - arXiv (2017)

    Google Scholar 

  29. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. Cornell University - arXiv (2016)

    Google Scholar 

  30. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks (2019)

    Google Scholar 

  31. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. Computer Vision and Pattern Recognition. arxiv (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, A., song, X., Sun, S., Zhang, Z., Cai, T., Song, H. (2024). YOLO-SA: An Efficient Object Detection Model Based on Self-attention Mechanism. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics