Skip to main content

Deep Learning Approach to Satellite Collision Avoidance Using Long Short-Term Memory

  • Conference paper
  • First Online:
Recent Trends in Intelligence Enabled Research (DoSIER 2023)

Abstract

Satellites are essential to our contemporary way of life in a variety of fields, including communication, navigation, crisis management, and science. With an increasing number of satellites, spacecraft, and other objects launched into space, collisions occur, and the amount of debris in orbit increases, satellite collisions are a key problem in space operations, and there are various challenges and issues, as a result, accurate and efficient orbit forecasting is becoming more important for increased space situational awareness. Deep learning (DL) has the potential to improve orbit prediction and collision avoidance in space by improving accuracy, automating responses, and providing real-time decision assistance. The proposed approach has the potential to significantly improve the safety and sustainability of satellite operations in increasingly crowded orbital environments. This paper introduces a satellite orbit forecasting model based on historical position and velocity data that uses long short-term memory (LSTM) and benchmark data to avoid satellite collisions by anticipating satellite position and velocity. According to the results, the model of LSTM can increase the precision of orbit prediction, with position accuracy ranging in R-square (R2) from 95 to 99% and for mean absolute error (MAE) from 0.05 to 0.02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hassanien, A.E., Darwish, A., & Abdelghafar, S. (2020). Machine learning in telemetry data mining of space mission: basics, challenging and future directions. Artificial Intelligence Review, 53, 3201–3230. https://doi.org/10.1007/s10462-019-09760-1

  2. Abdelghafar, S., Darwish, A., & Hassanien, A.E. (2020). Intelligent health monitoring systems for space missions based on data mining techniques. In A. Hassanien, A. Darwish, H. El-Askary (Eds.), Machine learning and data mining in aerospace technology. Studies in computational intelligence (Vol. 836). Springer, Cham. https://doi.org/10.1007/978-3-030-20212-5_4

  3. Stoll, E., D’Souza, B., Virgili, B.B., Merz, K., & Krag, H. (2013). Operational collision avoidance of small satellite missions. In Proceedings of IEEE Aerospace Conference (pp. 1–11). https://doi.org/10.1109/AERO.2013.6496955

  4. Geospatial World. Available online: https://www.geospatialworld.net/blogs/howmany-satellites-orbit-earth-and-why-spacetraffic-management-is-crucial/. Accessed on 3 June 2021

  5. Puente, C., Sáenz-Nuño, M. A., Villa-Monte, A., & Olivas, J. A. (2021). Satellite orbit prediction using big data and soft computing techniques to avoid space collisions. Mathematics, 9(17), 2040. https://doi.org/10.3390/math9172040

  6. Kessler, D. J., Johnson, N. L., Liou, J., & Matney, M. (2010). The Kessler syndrome: Implications to future space operations. Advances in the Astronautical Sciences, 137(8).

    Google Scholar 

  7. Hlsmann, M., Kahle, R., Schneller, M., Aida, S., Hahn, M., Panzenbck, E., Sprl, A., Terzibaschian, T., & Halle, W. (2019). Debris collision avoidance by means of attitude controlin-flight demonstration with TET-1. Journal of Space Safety Engineering, 6(4), 284–290. https://doi.org/10.1016/j.jsse.2019.09.003

  8. Ryan, S., & Christiansen, E. L. (2013). Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding. Acta Astronautica, 83, 216–231. https://doi.org/10.1016/j.actaastro.2012.09.012

  9. Uriot, T., Izzo, D., Simões, L. F., Abay, R., Einecke, N., Rebhan, S., Martinez Heras, J., Letizia, F., Siminski,. J., & Merz, K. (2021). Spacecraft collision avoidance challenge: design and results of a machine learning competition. Astrodynamics. https://doi.org/10.1007/s42064-021-0101-5

  10. Ren, H., Chen, X., Guan, B., Wang, Y., Liu, T., & Peng, K. (2019). Research on satellite orbit prediction based on neural network algorithm. In HPCCT (pp. 267–273), Guangzhou, China. https://doi.org/10.1145/3341069.3342995

  11. Peng, H., & Bai, X. (2018). Improving orbit prediction accuracy through supervised machine learning. Advances in Space Research, 61, 2628–2646, https://doi.org/10.1016/j.asr.2018.03.001

  12. Peng, H., & Bai, X. (2019). Machine learning approach to improve satellite orbit prediction accuracy using publicly available data. The Journal of the Astronautical Sciences, 67, 762–793. https://doi.org/10.1007/s40295-019-00158-3

  13. Peng, H., & Bai, X. (2021). Fusion of a machine learning approach and classical orbit predictions. Acta Astronautica , 184, 222–240, https://doi.org/10.1016/j.actaastro.2021.04.017

  14. Osama, A., Raafat, M., Darwish, A., Abdelghafar, S., Hassanien, A. E. (2022). Satellite orbit prediction based on recurrent neural network using two line elements. In 5th International Conference on Computing and Informatics (ICCI) (pp. 298–302). https://doi.org/10.1109/ICCI54321.2022.9756063

  15. https://www.kaggle.com/datasets/sohamxi/satellite-position-data-idao-2020

  16. Sezer, O. B., Gudelek, M. U., Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: a systematic literature review: 2005 2019. Applied Soft Computing, 90, 106181, https://doi.org/10.48550/arXiv.1911.13288

  17. Zhang, Y., Yan, B., & Aasma, M. (2020). A novel deep learning framework: prediction and analysis of financial time series using CEEMD and LSTM. Expert System with Application, 159, 113609, https://doi.org/10.1016/j.eswa.2020.113609

  18. Han, Z., Zhao, J., Leung, H., Ma, K. F., & Wang, W. (2021). A review of deep learning models for time series prediction. IEEE Sensors Journal, 21(6), 7833–7848. https://doi.org/10.1109/JSEN.2019.2923982

  19. Tulczyjew, L., Myller, M., Kawulok, M., Kostrzewa, D., & Nalepa, J. (2021). Predicting risk of satellite collisions using machine learning. International Association for the Advancement of Space Safety, 8(4), 2468–8967. Elsevier. https://doi.org/10.1016/j.jsse.2021.09.001

  20. Mandic, D., & Chambers, J. (2001). Recurrent neural networks for prediction: Learning algorithms, architectures and stability. Wiley. https://doi.org/10.1002/047084535X

  21. Saini, S., & Sahula, V. Setting up a neural machine translation system for English to Indian languages. In Cognitive informatics, computer modelling, and cognitive science (pp. 195–212). https://doi.org/10.1016/b978-0-12-819443-0.00011-8

  22. Abdelghafar, S., Goda, E., Darwish, A., & Hassanien, A. E. (2019). Satellite lithium-ion battery remaining useful life estimation by coyote optimization algorithm. In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 124–129), Cairo, Egypt. https://doi.org/10.1109/ICICIS46948.2019.9014752

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Osama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osama, A., Raafat, M., Abdelghafar, S., Darwish, A., Hassanien, A.E. (2024). Deep Learning Approach to Satellite Collision Avoidance Using Long Short-Term Memory. In: Bhattacharyya, S., Das, G., De, S., Mrsic, L. (eds) Recent Trends in Intelligence Enabled Research. DoSIER 2023. Advances in Intelligent Systems and Computing, vol 1457. Springer, Singapore. https://doi.org/10.1007/978-981-97-2321-8_9

Download citation

Publish with us

Policies and ethics