Skip to main content

Uncertain Zone-Based Color Image Enhancement

  • Conference paper
  • First Online:
Recent Trends in Intelligence Enabled Research (DoSIER 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1457))

Included in the following conference series:

  • 7 Accesses

Abstract

In the science of image processing, image enhancement is a significant field. Basically image’s quality differs due to ambiguity in the image pattern. Contrast enhancement attempts to increase the image’s quality by reducing the uncertainty due to spatial and gray-level ambiguity in the particular image. Here, we propose a novel method for color image enhancement in fuzzy domain. In this paper, we first define an uncertain zone in an image. By reducing the fuzzy entropy of the uncertain zone we enhance an image in fuzzy domain. By applying the proposed method on some common datasets we demonstrate that the proposed method is fairly effective when compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Xu, Y., & Yang, C. (2021). Sun B, Yan X, Chen M: A novel multi-scale fusion framework for detail-preserving low-light image enhancement. Information Sciences, 548, 378–397.

    Article  MathSciNet  Google Scholar 

  2. Bhandari, A. K., Kumar, A., Chaudhary, S., & Singh, G. K. (2017). A new beta differential evolution algorithm for edge preserved colored satellite image enhancement. Multidimensional Systems and Signal Processing, 28(2), 495–527.

    Article  Google Scholar 

  3. Li, M., Liu, J., Yang, W., Sun, X., & Guo, Z. (2018). Structure-revealing low-light image enhancement via robust retinex model. IEEE Transactions on Image Processing, 27(6), 2828–2841.

    Article  MathSciNet  Google Scholar 

  4. Tao, L., Zhu, C., Xiang, G., Li, Y., Jia, H., & Xie, X. (2017). Llcnn: A convolutional neural network for low-light image enhancement. In IEEE visual communications and ımage processing (pp. 1–4). IEEE.

    Google Scholar 

  5. Paul, A. (2023). Adaptive tri-plateau limit tri-histogram equalization algorithm for digital image enhancement. The Visual Computer, 39(1), 297–318.

    Article  Google Scholar 

  6. Xiao, B., Xu, Y., Tang, H., Bi, X., & Li, W. (2019). Histogram learning in image contrast enhancement. In IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 1880–1889).

    Google Scholar 

  7. Li, M., Liu, J., Yang, W., Sun, X., & Guo, Z. (2018). Structure-revealing low-light image enhancement via robust retinex model. IEEE Transactions on Image Processing, 27(6), 2828–2841.

    Article  MathSciNet  Google Scholar 

  8. Wang, B., Yu, Y., & Xu, Y.-Q. (2011). Example-based image color and tone style enhancement. ACM Transactions on Graphics, 30(4), 1–12.

    Google Scholar 

  9. Zhang, W., Pan, X., Xie, X., Li, L., Wang, Z., & Han, C. (2021). Color correction and adaptive contrast enhancement for underwater image enhancement. Computers and Electrical Engineering, 91, 106981.

    Article  Google Scholar 

  10. Afifi, M., Price, B., Cohen, S., & Brown, M. S. (2019). When color constancy goes wrong: Correcting improperly white-balanced images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1535–1544).

    Google Scholar 

  11. Tai, S. C., Liao, T.-W., Chang, Y.-Y., & Yeh, C.-P. (2018). Automatic white balance algorithm through the average equalization and threshold. In Proceedings of the 2012 8th ınternational conference on ınformation science and digital content technology (ICIDT2012) (Vol. 3, pp. 571–576). IEEE.

    Google Scholar 

  12. Tang, J., Peli, E., & Acton, S. (2003). Image enhancement using a contrast measure in the compressed domain. IEEE Signal Processing Letters, 10(10), 289–292.

    Article  Google Scholar 

  13. Peli, T., & Lim, J. S. (1982). Adaptive filtering for image enhancement. Optical Engineering, 21(1), 211108–211108.

    Article  Google Scholar 

  14. Toet, A. (1990). Adaptive multi-scale contrast enhancement through non-linear pyramid recombination. Pattern Recognition Letters, 11(11), 735–742.

    Article  Google Scholar 

  15. Pei, W., & Zhu, Y. Y. (2009). Wavelet transform-based edge detection of non-uniform illumination image. In Geoinformatics 2008 and joint conference on GIS and built environment: Advanced spatial data models and analyses (pp. 71461I–71461I). International Society for Optics and Photonics.

    Google Scholar 

  16. Fan, C.-N., Wang, H.-B., & Zhang, F.-Y. (2009). Improved wavelet-based ıllumination normalization algorithm for face recognition. In Proceedings of the 2009 first ınternational conference on ınformation science and engineering (pp. 583–586). IEEE.

    Google Scholar 

  17. Matsuyama, E., Tsai, D.-Y., Lee, Y., Tsurumaki, M., Takahashi, N., Watanabe, H., & Chen, H.-M. (2013). A modified undecimated discrete wavelet transform based approach to mammographic image denoising. Journal of Digital Imaging, 26(4), 748–758.

    Article  Google Scholar 

  18. Dhar, S., Roy, H., Saha, R., Bagchi, P., & Ghosh, B. (2021). Nuclei image boundary ISBN:978-93-5717-892-1 RCC institute of information technology, Kolkata, detection based on interval type-2 fuzzy set and bat algorithm. In Proceedings of research and applications in artificial ıntelligence (pp. 121–129). Springer, Singapore.

    Google Scholar 

  19. Mayathevar, K., Veluchamy, M., & Subramani, B. (2020). Fuzzy color histogram equalization with weighted distribution for image enhancement. Optik, 216, 164927.

    Article  Google Scholar 

  20. Parihar, A. S., & Verma, O. P. (2017). Khanna C: Fuzzy-contextual contrast enhancement. IEEE Transactions on Image Processing, 26(4), 1810–1819.

    Article  MathSciNet  Google Scholar 

  21. Dhar, S., & Kundu, M. K. (2019). Interval type-2 fuzzy set and human vision based multi-scale geometric analysis for text-graphics segmentation. Multimedia Tools and Applications, 78(16), 22939–22957.

    Article  Google Scholar 

  22. Veluchamy, M., & Subramani, B. (2020). Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Applied Soft Computing, 89, 106077.

    Article  Google Scholar 

  23. Dhar, S., & Kundu, M. K. (2020). Multi-class ımage segmentation using theory of weak string energy and fuzzy set. In Intelligence enabled research (pp. 33–40). Springer, Singapore.

    Google Scholar 

  24. Liu, X., Pedersen, M., & Wang, R. (2022). Survey of natural image enhancement techniques: Classification, evaluation, challenges, and perspectives. Digital Signal Processing, 12, 103547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, K., Dhar, S., Roy, H. (2024). Uncertain Zone-Based Color Image Enhancement. In: Bhattacharyya, S., Das, G., De, S., Mrsic, L. (eds) Recent Trends in Intelligence Enabled Research. DoSIER 2023. Advances in Intelligent Systems and Computing, vol 1457. Springer, Singapore. https://doi.org/10.1007/978-981-97-2321-8_15

Download citation

Publish with us

Policies and ethics