Skip to main content

Hyperparameter Tuning MLP’s for Probabilistic Time Series Forecasting

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Time series forecasting attempts to predict future events by analyzing past trends and patterns. Although well researched, certain critical aspects pertaining to the use of deep learning in time series forecasting remain ambiguous. Our research primarily focuses on examining the impact of specific hyperparameters related to time series, such as context length and validation strategy, on the performance of the state-of-the-art MLP model in time series forecasting. We have conducted a comprehensive series of experiments involving 4800 configurations per dataset across 20 time series forecasting datasets, and our findings demonstrate the importance of tuning these parameters. Furthermore, in this work, we introduce the largest metadataset for time series forecasting to date, named TSBench, comprising 97200 evaluations, which is a twentyfold increase compared to previous works in the field. Finally, we demonstrate the utility of the created metadataset on multi-fidelity hyperparameter optimization tasks.

K. Madhusudhanan and S. Jawed—This authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/18kiran12/TSBench.git.

References

  1. Alexandrov, A., et al.: Gluonts: probabilistic time series models in python. ArXiv (2019)

    Google Scholar 

  2. Arango, S.P., Jomaa, H.S., Wistuba, M., Grabocka, J.: Hpo-b: a large-scale reproducible benchmark for black-box hpo based on openml. In: NeurIPS Datasets and Benchmarks Track (2021)

    Google Scholar 

  3. Borchert, O., Salinas, D., Flunkert, V., Januschowski, T., Gunnemann, S.: Multi-objective model selection for time series forecasting. ArXiv (2022)

    Google Scholar 

  4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). In: ICLR (2015)

    Google Scholar 

  5. Deng, D., Karl, F., Hutter, F., Bischl, B., Lindauer, M.: Efficient automated deep learning for time series forecasting. In: ECML PKDD, pp. 664–680. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-26409-2_40

  6. Falkner, S., Klein, A., Hutter, F.: Bohb: robust and efficient hyperparameter optimization at scale. In: ICML, pp. 1437–1446. PMLR (2018)

    Google Scholar 

  7. Godahewa, R., Bergmeir, C., Webb, G.I., Hyndman, R.J., Montero-Manso, P.: Monash time series forecasting archive. In: NeurIPS Datasets and Benchmarks (2021)

    Google Scholar 

  8. Jawed, S., Jomaa, H., Schmidt-Thieme, L., Grabocka, J.: Multi-task learning curve forecasting across hyperparameter configurations and datasets. In: ECML PKDD, pp. 485–501 (2021)

    Google Scholar 

  9. Jomaa, H.S., Schmidt-Thieme, L., Grabocka, J.: Dataset2vec: learning dataset meta-features. Data Min. Knowl. Disc. 35, 964–985 (2021)

    Article  MathSciNet  Google Scholar 

  10. Kadra, A., Lindauer, M., Hutter, F., Grabocka, J.: Well-tuned simple nets excel on tabular datasets. In: NeurIPS, vol. 34, pp. 23928–23941 (2021)

    Google Scholar 

  11. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. JMLR 18(1), 1–52 (2017)

    MathSciNet  Google Scholar 

  12. Lindauer, M., et al.: Smac3: a versatile bayesian optimization package for hyperparameter optimization. JMLR 23(54), 1–9 (2022)

    MathSciNet  Google Scholar 

  13. Madhusudhanan, K., Burchert, J., Duong-Trung, N., Born, S., Schmidt-Thieme, L.: U-net inspired transformer architecture for far horizon time series forecasting. In: ECML/PKDD (2021)

    Google Scholar 

  14. Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64 words: long-term forecasting with transformers. In: ICLR (2023)

    Google Scholar 

  15. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020)

    Google Scholar 

  16. Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U.M., Vollgraf, R.: Multivariate probabilistic time series forecasting via conditioned normalizing flows. In: ICLR (2021)

    Google Scholar 

  17. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. JMLR 36(3), 1181–1191 (2020)

    Google Scholar 

  18. Shah, S.Y., et al.: Autoai-ts: autoai for time series forecasting. In: SIGMOD, pp. 2584–2596 (2021)

    Google Scholar 

  19. Ullah, I., et al.: Meta-album: multi-domain meta-dataset for few-shot image classification. In: NeurIPS, vol. 35, pp. 3232–3247 (2022)

    Google Scholar 

  20. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. In: NeurIPS, vol. 34, pp. 22419–22430 (2021)

    Google Scholar 

  21. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: AAAI (2023)

    Google Scholar 

  22. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: AAAI, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

  23. Zimmer, L., Lindauer, M., Hutter, F.: Auto-pytorch tabular: multi-fidelity metalearning for efficient and robust autodl. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3079–3090 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Madhusudhanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madhusudhanan, K., Jawed, S., Schmidt-Thieme, L. (2024). Hyperparameter Tuning MLP’s for Probabilistic Time Series Forecasting. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14650. Springer, Singapore. https://doi.org/10.1007/978-981-97-2266-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2266-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2265-5

  • Online ISBN: 978-981-97-2266-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics