Skip to main content

Soft Contrastive Learning forĀ Implicit Feedback Recommendations

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14649))

Included in the following conference series:

  • 212 Accesses

Abstract

Collaborative filtering (CF) plays a crucial role in the development of recommendations. Most CF research focuses on implicit feedback due to its accessibility, but deriving user preferences from such feedback is challenging given the inherent noise in interactions. Existing works primarily employ unobserved interactions as negative samples, leading to a critical noisy-label problem. In this study, we propose SCLRec (Soft Contrastive Learning for Recommendations), a novel method to alleviate the noise issue in implicit recommendations. To this end, we first construct a similarity matrix based on user and item embeddings along with item popularity information. Subsequently, to leverage information from nearby samples, we employ entropy optimal transport to obtain the matching matrix from the similarity matrix. The matching matrix provides additional supervisory signals that uncover matching relationships of unobserved user-item interactions, thereby mitigating the noise issue. Finally, we treat the matching matrix as soft targets, and use them to train the model via contrastive learning loss. Thus, we term it soft contrastive learning, which combines the denoising capability of soft targets with the representational strength of contrastive learning to enhance implicit recommendations. Extensive experiments on three public datasets demonstrate that SCLRec achieves consistent performance improvements compared to state-of-the-art CF methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cao, J., Cong, X., Sheng, J., Liu, T., Wang, B.: Contrastive cross-domain sequential recommendation. In: CIKM, pp. 138ā€“147 (2022)

    Google ScholarĀ 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597ā€“1607 (2020)

    Google ScholarĀ 

  3. Cheng, M., et al.: Learning recommender systems with implicit feedback via soft target enhancement. In: SIGIR, pp. 575ā€“584 (2021)

    Google ScholarĀ 

  4. Cheng, R., Wu, B., Zhang, P., Vajda, P., Gonzalez, J.E.: Data-efficient language-supervised zero-shot learning with self-distillation. In: CVPR, pp. 3119ā€“3124 (2021)

    Google ScholarĀ 

  5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082ā€“1090 (2011)

    Google ScholarĀ 

  6. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: RecSys, pp. 191ā€“198 (2016)

    Google ScholarĀ 

  7. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: NIPS, pp. 2292ā€“2300 (2013)

    Google ScholarĀ 

  8. Damodaran, B.B., Flamary, R., Seguy, V., Courty, N.: An entropic optimal transport loss for learning deep neural networks under label noise in remote sensing images. Comput. Vis. Image Understand. 191(C), 1ā€“12 (2020)

    Google ScholarĀ 

  9. Gao, T., Yao, X., Chen, D.: SimCSE: Simple contrastive learning of sentence embeddings. In: EMNLP, pp. 6894ā€“6910 (2021)

    Google ScholarĀ 

  10. Gao, Y., et al.: Self-guided learning to denoise for robust recommendation. In: SIGIR, pp. 1412ā€“1422 (2022)

    Google ScholarĀ 

  11. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1ā€“19 (2015)

    ArticleĀ  Google ScholarĀ 

  12. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639ā€“648 (2020)

    Google ScholarĀ 

  13. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: SIGIR, pp. 549ā€“558 (2016)

    Google ScholarĀ 

  14. Jiang, Y., Huang, C., Huang, L.: Adaptive graph contrastive learning for recommendation. In: KDD, pp. 4252ā€“4261 (2023)

    Google ScholarĀ 

  15. Lee, D., Kang, S., Ju, H., Park, C., Yu, H.: Bootstrapping user and item representations for one-class collaborative filtering. In: SIGIR, pp. 317ā€“326 (2021)

    Google ScholarĀ 

  16. McAuley, J., Targett, C., Shi, Q., vanĀ den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43ā€“52 (2015)

    Google ScholarĀ 

  17. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  18. Pan, R., et al.: One-class collaborative filtering. In: ICDM, pp. 502ā€“511 (2008)

    Google ScholarĀ 

  19. Qiu, Z.H., Hu, Q., Yuan, Z., Zhou, D., Zhang, L., Yang, T.: Not all semantics are created equal: contrastive self-supervised learning with automatic temperature individualization. In: ICML, pp. 28389ā€“28421 (2023)

    Google ScholarĀ 

  20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452ā€“461 (2009)

    Google ScholarĀ 

  21. Sankar, A., Wang, J., Krishnan, A., Sundaram, H.: Beyond localized graph neural networks: an attributed motif regularization framework. In: ICDM, pp. 472ā€“481 (2020)

    Google ScholarĀ 

  22. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence, pp. 1ā€“19 (2009)

    Google ScholarĀ 

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NIPS, pp. 1195ā€“1204 (2017)

    Google ScholarĀ 

  24. Tian, C., Xie, Y., Li, Y., Yang, N., Zhao, W.X.: Learning to denoise unreliable interactions for graph collaborative filtering. In: SIGIR, pp. 122ā€“132 (2022)

    Google ScholarĀ 

  25. Tianchi: IJCAI-16 brick-and-mortar store recommendation dataset (2018). https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

  26. Wang, C., et al.: Towards representation alignment and uniformity in collaborative filtering. In: KDD, pp. 1816ā€“1825 (2022)

    Google ScholarĀ 

  27. Wang, W., Feng, F., He, X., Nie, L., Chua, T.S.: Denoising implicit feedback for recommendation. In: WSDM, pp. 373ā€“381 (2021)

    Google ScholarĀ 

  28. Wang, Z., Xu, Q., Yang, Z., Cao, X., Huang, Q.: Implicit feedbacks are not always favorable: iterative relabeled one-class collaborative filtering against noisy interactions. In: MM, pp. 3070ā€“3078 (2021)

    Google ScholarĀ 

  29. Wu, J., et al.: Self-supervised graph learning for recommendation. In: SIGIR, pp. 726ā€“735 (2021)

    Google ScholarĀ 

  30. Yu, W., Qin, Z.: Sampler design for implicit feedback data by noisy-label robust learning. In: SIGIR, pp. 861ā€“870 (2020)

    Google ScholarĀ 

  31. Zhou, C., Ma, J., Zhang, J., Zhou, J., Yang, H.: Contrastive learning for debiased candidate generation in large-scale recommender systems. In: KDD, pp. 3985ā€“3995 (2021)

    Google ScholarĀ 

Download references

Acknowledgements

This work was partially supported by NSFC (62122037) and the Collaborative Innovation Center of Novel Software Technology and Industrialization. We thank Zi-Hao Qiu for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, ZH., Zhang, L. (2024). Soft Contrastive Learning forĀ Implicit Feedback Recommendations. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14649. Springer, Singapore. https://doi.org/10.1007/978-981-97-2262-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2262-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2264-8

  • Online ISBN: 978-981-97-2262-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics