Skip to main content

UIPC-MF: User-Item Prototype Connection Matrix Factorization for Explainable Collaborative Filtering

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14649))

Included in the following conference series:

  • 190 Accesses

Abstract

In recent years, prototypes have gained traction as an interpretability concept in the Computer Vision Domain, and have also been explored in Recommender System algorithms. This paper introduces UIPC-MF, an innovative prototype-based matrix factorization technique aimed at offering explainable collaborative filtering recommendations. Within UIPC-MF, both users and items link with prototype sets that encapsulate general collaborative features. UIPC-MF uniquely learns connection weights, highlighting the relationship between user and item prototypes, offering a fresh method for determining the final predicted score beyond the conventional dot product. Comparative results show that UIPC-MF surpasses other prototype-based benchmarks in Hit Ratio and Normalized Discounted Cumulative Gain across three datasets, while enhancing transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdollahpouri, H., Mansoury, M., Burke, R., Mobasher, B.: The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286 (2019)

  2. Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338 (2020)

    Google Scholar 

  3. Barkan, O., Hirsch, R., Katz, O., Caciularu, A., Koenigstein, N.: Anchor-based collaborative filtering. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 2877–2881 (2021)

    Google Scholar 

  4. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  5. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. Chen, X., Zhang, Y., Wen, J.R.: Measuring “why” in recommender systems: a comprehensive survey on the evaluation of explainable recommendation. arXiv preprint arXiv:2202.06466 (2022)

  7. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  10. Keswani, M., Ramakrishnan, S., Reddy, N., Balasubramanian, V.N.: Proto2proto: can you recognize the car, the way i do? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10233–10243 (2022)

    Google Scholar 

  11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  12. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  Google Scholar 

  13. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp. 689–698 (2018)

    Google Scholar 

  14. McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)

    Google Scholar 

  15. Melchiorre, A.B., Rekabsaz, N., Ganhör, C., Schedl, M.: ProtoMF: prototype-based matrix factorization for effective and explainable recommendations. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 246–256 (2022)

    Google Scholar 

  16. Molnar, C.: Interpretable Machine Learning. 2 edn. (2022)

    Google Scholar 

  17. Moscati, M., Parada-Cabaleiro, E., Deldjoo, Y., Zangerle, E., Schedl, M.: Music4all-onion-a large-scale multi-faceted content-centric music recommendation dataset. In: Proceedings of the 31th ACM International Conference on Information & Knowledge Management (CIKM 2022) (2022)

    Google Scholar 

  18. Nauta, M., Van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14933–14943 (2021)

    Google Scholar 

  19. Rendle, S.: Item recommendation from implicit feedback. In: Recommender Systems Handbook, pp. 143–171. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-2197-4_4

  20. Sankar, A., Wang, J., Krishnan, A., Sundaram, H.: ProtoCF: prototypical collaborative filtering for few-shot recommendation. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp. 166–175 (2021)

    Google Scholar 

  21. Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_10

    Chapter  Google Scholar 

  22. Wu, J., et al.: On the effectiveness of sampled softmax loss for item recommendation. arXiv preprint arXiv:2201.02327 (2022)

  23. Zhang, Y., Chen, X., et al.: Explainable recommendation: a survey and new perspectives. Found. Trends® Inf. Retrieval 14(1), 1–101 (2020)

    Google Scholar 

  24. Zhang, Y., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 726–742 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, L., Soo, VW. (2024). UIPC-MF: User-Item Prototype Connection Matrix Factorization for Explainable Collaborative Filtering. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14649. Springer, Singapore. https://doi.org/10.1007/978-981-97-2262-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2262-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2264-8

  • Online ISBN: 978-981-97-2262-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics