Skip to main content

Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach to Model Interpretability and Precision

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

The evolution of deep learning and artificial intelligence has significantly reshaped technological landscapes. However, their effective application in crucial sectors such as medicine demands more than just superior performance, but trustworthiness as well. While interpretability plays a pivotal role, existing explainable AI (XAI) approaches often do not reveal Clever Hans behavior where a model makes (ungeneralizable) correct predictions using spurious correlations or biases in data. Likewise, current post-hoc XAI methods are susceptible to generating unjustified counterfactual examples. In this paper, we approach XAI with an innovative model debugging methodology realized through Jacobian Saliency Map (JSM). To cast the problem into a concrete context, we employ Alzheimer’s disease (AD) diagnosis as the use case, motivated by its significant impact on human lives and the formidable challenge in its early detection, stemming from the intricate nature of its progression. We introduce an interpretable, multimodal model for AD classification over its multi-stage progression, incorporating JSM as a modality-agnostic tool that provides insights into volumetric changes indicative of brain abnormalities. Our extensive evaluation including ablation study manifests the efficacy of using JSM for model debugging and interpretation, while significantly enhancing model accuracy as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, S.Q., et al.: Transformed domain convolutional neural network for Alzheimer’s disease diagnosis using structural MRI. Pattern Recogn. 133, 109031 (2023)

    Article  Google Scholar 

  2. Altay, F., et al.: Preclinical stage Alzheimer’s disease detection using magnetic resonance image scans. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 15088–15097 (2021)

    Google Scholar 

  3. Avants, B.B., et al.: Advanced normalization tools (ants). Insight j 2(365), 1–35 (2009)

    Google Scholar 

  4. Basheer, S., et al.: Computational modeling of dementia prediction using deep neural network: analysis on oasis dataset. IEEE Access 9, 42449–42462 (2021)

    Article  Google Scholar 

  5. Castellano, G., et al.: Detection of dementia through 3d convolutional neural networks based on amyloid pet. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2021)

    Google Scholar 

  6. El-Sappagh, S., et al.: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 11(1), 2660 (2021)

    Article  Google Scholar 

  7. He, H., et al.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  8. Hühn, J., Hüllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Disc. 19, 293–319 (2009)

    Article  MathSciNet  Google Scholar 

  9. Jenkinson, M., et al.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  10. Khare, S.K., et al.: Adazd-net: automated adaptive and explainable Alzheimer’s disease detection system using EEG signals. Knowl.-Based Syst. 278, 110858 (2023)

    Article  Google Scholar 

  11. Kuijf, H.J., et al.: Registration of brain CT images to an MRI template for the purpose of lesion-symptom mapping. In: Multimodal Brain Image Analysis: Third International Workshop, MBIA 2013, Held in Conjunction with MICCAI 2013, Japan, Proceedings 3, pp. 119–128. Springer (2013)

    Google Scholar 

  12. Laugel, T., et al.: The dangers of post-hoc interpretability: Unjustified counterfactual explanations. arXiv preprint arXiv:1907.09294 (2019)

  13. Lazli, L., et al.: Computer-aided diagnosis system of Alzheimer’s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the SVDD model. Brain Sci. 9(10), 289 (2019)

    Article  Google Scholar 

  14. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  15. Massalimova, A., et al.: Input agnostic deep learning for Alzheimer’s disease classification using multimodal MRI images. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2875–2878. IEEE (2021)

    Google Scholar 

  16. Mattes, D., et al.: Pet-ct image registration in the chest using free-form deformations 22(1), 120–128 (2003)

    Google Scholar 

  17. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  18. Mulyadi, A.W., et al.: Estimating explainable Alzheimer’s disease likelihood map via clinically-guided prototype learning. Neuroimage 273, 120073 (2023)

    Article  Google Scholar 

  19. Mustafa, Y., Elmahallawy, M., Luo, T., Eldawlatly, S.: A brain-computer interface augmented reality framework with auto-adaptive ssvep recognition. In: 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 799–804. IEEE (2023)

    Google Scholar 

  20. Mustafa, Y., Luo, T.: Diagnosing Alzheimer’s disease using early-late multimodal data fusion with Jacobian maps. In: IEEE International Conference on E-health Networking, Application & Services (Healthcom) (2023)

    Google Scholar 

  21. Ribeiro, M.T., et al.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  22. Riyahi, S., et al.: Quantifying local tumor morphological changes with Jacobian map for prediction of pathologic tumor response to chemo-radiotherapy in locally advanced esophageal cancer. Phys. Med. Biol. 63(14), 145020 (2018)

    Article  Google Scholar 

  23. Ross, A.S., et al.: Right for the right reasons: training differentiable models by constraining their explanations. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2662–2670 (2017)

    Google Scholar 

  24. Salami, F., et al.: Designing a clinical decision support system for Alzheimer’s diagnosis on oasis-3 data set. Biomed. Signal Process. Control 74, 103527 (2022)

    Article  Google Scholar 

  25. Selvaraju, R.R., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  27. Tustison, N.J., et al.: Explicit b-spline regularization in diffeomorphic image registration. Front. Neuroinform. 7, 39 (2013)

    Article  Google Scholar 

  28. Venugopalan, J., et al.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 3254 (2021)

    Article  Google Scholar 

  29. Yu, L., Xiang, et al.: A novel explainable neural network for Alzheimer’s disease diagnosis. Pattern Recogn. 131, 108876 (2022)

    Google Scholar 

  30. Zhang, X., Han, et al.: An explainable 3d residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE J. Biomed. Health Inform. 26(11), 5289–5297 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mustafa, Y., Luo, T. (2024). Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach to Model Interpretability and Precision. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics