Skip to main content

Adaptive Prediction Interval for Data Stream Regression

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Prediction Interval (PI) is a powerful technique for quantifying the uncertainty of regression tasks. However, research on PI for data streams has not received much attention. Moreover, traditional PI-generating approaches are not directly applicable due to the dynamic and evolving nature of data streams. This paper presents AdaPI (ADAptive Prediction Interval), a novel method that can automatically adjust the interval width by an appropriate amount according to historical information to converge the coverage to a user-defined percentage. AdaPI can be applied to any streaming PI technique as a postprocessing step. This paper develops an incremental variant of the pervasive Mean and Variance Estimation (MVE) method for use with AdaPI. An empirical evaluation over a set of standard streaming regression tasks demonstrates AdaPI’s ability to generate compact prediction intervals with a coverage close to the desired level, outperforming alternative methods.

Y. Sun—I would like to acknowledge the support from TAIAO project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber, R.F., Candes, E.J., Ramdas, A., Tibshirani, R.J.: Predictive inference with the jackknife+ (2021)

    Google Scholar 

  2. Bifet, A., et al.: Moa: massive online analysis, a framework for stream classification and clustering. PMLR (2010)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Article  Google Scholar 

  4. Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and background knowledge. Progr. Artif. Intell. 2, 113–127 (2014)

    Article  Google Scholar 

  5. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  Google Scholar 

  6. Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests for data stream regression. In: ESANN (2018)

    Google Scholar 

  7. Gomes, H.M., Montiel, J., Mastelini, S.M., Pfahringer, B., Bifet, A.: On ensemble techniques for data stream regression. In: 2020 IJCNN. IEEE (2020)

    Google Scholar 

  8. Hadjicharalambous, M., Polycarpou, M.M., Panayiotou, C.G.: Neural network-based construction of online prediction intervals. Neural Comput. Appl. 32(11), 6715–6733 (2020)

    Article  Google Scholar 

  9. Hahn, G.J., Factors for calculating two-sided prediction intervals for samples from a normal distribution. J. Am. Stat. Assoc. (1969)

    Google Scholar 

  10. Hahn, G.J., Nelson, W.: A survey of prediction intervals and their applications. J. Qual. Technol. 5(4), 178–188 (1973)

    Article  Google Scholar 

  11. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23, 128–168 (2011)

    Article  MathSciNet  Google Scholar 

  12. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 22(3), 337–346 (2010)

    Article  Google Scholar 

  13. Liu, Y., Zhao, J., Wang, W., Pedrycz, W.: Prediction intervals for granular data streams based on evolving type-2 fuzzy granular neural network dynamic ensemble. IEEE Trans. Fuzzy Syst. 29(4), 874–888 (2020)

    Article  Google Scholar 

  14. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: ICNN’94. IEEE (1994)

    Google Scholar 

  15. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9(3) (2008)

    Google Scholar 

  16. Shrestha, D.L., Solomatine, D.P.: Machine learning approaches for estimation of prediction interval for the model output. Neural Netw. 19(2), 225–235 (2006)

    Article  Google Scholar 

  17. Sun, Y., Pfahringer, B., Gomes, H.M., Bifet, A.: SOKNL: a novel way of integrating k-nearest neighbours with adaptive random forest regression for data streams. Data Min. Knowl. Discov. (2022)

    Google Scholar 

  18. Waugh, S.G.: Extending and benchmarking cascade-correlation: extensions to the cascade-correlation architecture and benchmarking of feed-forward supervised artificial neural networks. Ph.D. thesis, University of Tasmania (1995)

    Google Scholar 

  19. Xu, C., Xie, Y.: Conformal prediction interval for dynamic time-series. In: International Conference on Machine Learning, pp. 11559–11569. PMLR (2021)

    Google Scholar 

  20. Zhao, J., Wang, W., Sheng, C., Zhao, J., Wang, W., Sheng, C.: Industrial prediction intervals with data uncertainty. In: Data-Driven Prediction for Industrial Processes and Their Applications, pp. 159–222 (2018)

    Google Scholar 

  21. Zhao, X., Barber, S., Taylor, C.C., Milan, Z.: Interval forecasts based on regression trees for streaming data. Adv. Data Anal. Classif. 15, 5–36 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Pfahringer, B., Murilo Gomes, H., Bifet, A. (2024). Adaptive Prediction Interval for Data Stream Regression. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics