Skip to main content

Revisiting Link Prediction with the Dowker Complex

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14646))

Included in the following conference series:

  • 206 Accesses

Abstract

We propose a novel method to study properties of graph-structured data by means of a geometric construction called Dowker complex. We study this simplicial complex through the use of persistent homology, which has shown to be a prominent tool to uncover relevant geometric and topological information in data. A positively weighted graph induces a distance in its sets of vertices. A classical approach in persistent homology is to construct a filtered Vietoris-Rips complex with vertices on the vertices of the graph. However, when the size of the set of vertices of the graph is large, the obtained simplicial complex may be computationally hard to handle. A solution The Dowker complex is constructed on a sample in the set of vertices of the graph called landmarks. A way to guaranty sparsity and proximity of the set of landmarks to all the vertices of the graph is by considering \(\epsilon \)-nets. We provide theoretical proofs of the stability of the Dowker construction and comparison with the Vietorips-Rips construction. We perform experiments showing that the Dowker complex based neural networks model performs good with respect to baseline methods in tasks such as link prediction and resilience to attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: ICML, pp. 17–24 (2006)

    Google Scholar 

  2. Aksoy, S.G., et al.: Seven open problems in applied combinatorics. arXiv preprint arXiv:2303.11464 (2023)

  3. Arafat, N.A., Basu, D., Bressan, S.: \(\epsilon \)-net induced lazy witness complexes on graphs (2020)

    Google Scholar 

  4. Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. PNAS 115(48), E11221–E11230 (2018)

    Article  Google Scholar 

  5. Bodnar, C., et al.: Weisfeiler and Lehman go topological: message passing simplicial networks. In: ICML, pp. 1026–1037 (2021)

    Google Scholar 

  6. Boissonnat, J.D., Guibas, L., Oudot, S.: Manifold reconstruction in arbitrary dimensions using witness complexes. In: SoCG, pp. 194–203 (2007)

    Google Scholar 

  7. Chami, I., Ying, R., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks (2019)

    Google Scholar 

  8. Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata. 173(1), 193–214 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell 4 (2021)

    Google Scholar 

  10. Chen, Y., Gel, Y.R., Poor, H.V.: BScNets: block simplicial complex neural networks. Proc. AAAI Conf. Artif. Intell. 36(6), 6333–6341 (2022)

    Google Scholar 

  11. Chen, Y., Gel, Y.R., Marathe, M.V., Poor, H.V.: A simplicial epidemic model for COVID-19 spread analysis. Proc. Natl. Acad. Sci. 121(1), e2313171120 (2024)

    Article  Google Scholar 

  12. Chen, Y., Jacob, R.A., Gel, Y.R., Zhang, J., Poor, H.V.: Learning power grid outages with higher-order topological neural networks. IEEE Trans. Power Syst. 39(1), 720–732 (2024)

    Google Scholar 

  13. Chen, Y., Jiang, T., Gel, Y.R.: H\(^2\)-nets: hyper-Hdge convolutional neural networks for time-series forecasting. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14713, pp. 271–289. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43424-2_17

  14. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: SoCG, pp. 263–271 (2005)

    Google Scholar 

  15. De Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: PBG, pp. 157–166 (2004)

    Google Scholar 

  16. Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. In: SoCG, pp. 107–116 (2013)

    Google Scholar 

  17. Ebli, S., Defferrard, M., Spreemann, G.: Simplicial neural networks. In: NeurIPS 2020 Workshop on TDA and Beyond (2020)

    Google Scholar 

  18. Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4, 52 (2021)

    Article  Google Scholar 

  19. Johnson, J.L., Goldring, T.: Discrete Hodge theory on graphs: a tutorial. Comput. Sci. Eng. 15(5), 42–55 (2013)

    Google Scholar 

  20. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)

    Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with gcns. In: ICLR (2017)

    Google Scholar 

  22. Liu, X., Feng, H., Wu, J., Xia, K.: Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction. PLoS Comp. Biol. 18(4), e1009943 (2022)

    Article  Google Scholar 

  23. Mavromatis, C., Karypis, G.: Graph InfoClust: maximizing coarse-grain mutual information in graphs. In: Karlapalem, K., et al. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2021, Part I. LNCS, vol. 12712, pp. 541–553. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_43

  24. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: ICLR (2019)

    Google Scholar 

  25. Roddenberry, T.M., Glaze, N., Segarra, S.: Principled simplicial neural networks for trajectory prediction. In: ICML, pp. 9020–9029 (2021)

    Google Scholar 

  26. Schaub, M.T., Benson, A.R., Horn, P., Lippner, G., Jadbabaie, A.: Random walks on simplicial complexes and the normalized Hodge 1-laplacian. SIAM Rev. 62(2), 353–391 (2020)

    Article  MathSciNet  Google Scholar 

  27. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  29. Yan, Z., Ma, T., Gao, L., Tang, Z., Chen, C.: Link prediction with persistent homology: an interactive view (2021)

    Google Scholar 

  30. Zhang, M., Chen, Y.: Link prediction based on graph neural networks (2018)

    Google Scholar 

Download references

Acknowledgements

This project has been supported in part by NASA AIST 21-AIST21_2-0059, NSF ECCS 2039701, TIP-2333703, and ONR N00014-21-1-2530 grants. The paper is based upon work supported by (while Y.R.G. was serving at) the NSF. The views expressed in the article do not necessarily represent the views of NSF, ONR or NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Won Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, J.W., Chen, Y., Frías, J., Castillo, J., Gel, Y. (2024). Revisiting Link Prediction with the Dowker Complex. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14646. Springer, Singapore. https://doi.org/10.1007/978-981-97-2253-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2253-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2252-5

  • Online ISBN: 978-981-97-2253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics