Skip to main content

Improving Structural and Semantic Global Knowledge in Graph Contrastive Learning with Distillation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14646))

Included in the following conference series:

  • 205 Accesses

Abstract

Graph contrastive learning has emerged as a pivotal task in the realm of graph representation learning, with the primary objective of maximizing mutual information between graph-augmented pairs exhibiting similar semantics. However, existing unsupervised graph contrastive learning approaches face a notable limitation in capturing both structural and semantic global information. This issues poses a substantial challenge, as nodes in close geographical proximity do not consistently possess similar features. To tackle this issue, this study introduces a simple framework for Distillation Node and Prototype Graph Contrastive Learning (DNPGCL). The framework enables contrastive learning by harnessing similar knowledge distillation to obtain more valuable structural and semantic global indications. Experimental results demonstrate that DNGCL outperforms existing unsupervised learning methods across a range of diverse graph datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  2. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  3. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  4. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)

    Google Scholar 

  5. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  7. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  8. Lin, B., Luo, B., He, J., Gui, N.: Self-supervised adaptive aggregator learning on graph. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12714, pp. 29–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75768-7_3

    Chapter  Google Scholar 

  9. Lin, S., et al.: Prototypical graph contrastive learning. IEEE Trans. Neural Netw. Learn. Syst. 35, 2747–2758 (2022)

    Article  Google Scholar 

  10. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  11. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  12. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

    Google Scholar 

  13. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  14. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: Infograph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv preprint arXiv:1908.01000 (2019)

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Xia, J., Wu, L., Chen, J., Hu, B., Li, S.Z.: SimGRACE: a simple framework for graph contrastive learning without data augmentation. In: Proceedings of the ACM Web Conference 2022, pp. 1070–1079 (2022)

    Google Scholar 

  17. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  18. Zhang, W., et al.: Evaluating deep graph neural networks. arXiv preprint arXiv:2108.00955 (2021)

  19. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. U1936213, Program of Shanghai Academic Research Leader No. 21XD1421500, Shanghai Science and Technology Commission Project No. 20020500600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, M., Wang, H., Xue, Y., Wu, Y., Wen, H. (2024). Improving Structural and Semantic Global Knowledge in Graph Contrastive Learning with Distillation. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14646. Springer, Singapore. https://doi.org/10.1007/978-981-97-2253-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2253-2_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2252-5

  • Online ISBN: 978-981-97-2253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics