Skip to main content

Latent Space Correlation-Aware Autoencoder for Anomaly Detection in Skewed Data

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Unsupervised learning-based anomaly detection using autoencoders has gained importance since anomalies behave differently than normal data when reconstructed from a well-regularized latent space. Existing research shows that retaining valuable properties of input data in latent space helps in the better reconstruction of unseen data. Moreover, real-world sensor data is skewed and non-Gaussian in nature rendering mean-based estimators unreliable for such cases. Reconstruction-based anomaly detection methods rely on Euclidean distance as the reconstruction error which does not consider useful correlation information in the latent space. In this work, we address some of the limitations of the Euclidean distance when used as a reconstruction error to detect anomalies (especially near anomalies) that have a similar distribution as the normal data in the feature space. We propose a latent dimension regularized autoencoder that leverages a robust form of the Mahalanobis distance (MD) to measure the latent space correlation to effectively detect near as well as far anomalies. We showcase that incorporating the correlation information in the form of robust MD in the latent space is quite helpful in separating both near and far anomalies in the reconstructed space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/padmaksha18/DRMDIT-AE/.

References

  1. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  2. Ren, J., Fort, S., Liu, J., Roy, A. G., Padhy, S., Lakshminarayanan, B.: A simple fix to Mahalanobis distance for improving near-OOD detection. arXiv preprint arXiv:2106.09022 (2021)

  3. Angiulli, F., Fassetti, F., Ferragina, L.: Latent out: an unsupervised deep anomaly detection approach exploiting latent space distribution. Mach. Learn. 112, 4323–4349 (2022). https://doi.org/10.1007/s10994-022-06153-4

    Article  MathSciNet  Google Scholar 

  4. Guo, J., Liu, G., Zuo, Y., Wu, J.: An anomaly detection framework based on autoencoder and nearest neighbor. In: 2018 15th International Conference on Service Systems and Service Management (ICSSSM), pp. 1-6. IEEE (2018)

    Google Scholar 

  5. Rashid, A.B., Ahmed, M., Sikos, L.F., Haskell-Dowland, P.: Anomaly detection in cybersecurity datasets via cooperative co-evolution-based feature selection. ACM Trans. Manage. Inf. Syst. 13(3), 1–39 (2022)

    Google Scholar 

  6. Zhang, Z., Jiang, T., Li, S., Yang, Y.: Automated feature learning for nonlinear process monitoring-an approach using stacked denoising autoencoder and k-nearest neighbor rule. J. Process Control 64, 49–61 (2018)

    Article  Google Scholar 

  7. Xiao, Z., Yan, Q., Amit, Y.: Likelihood regret: an out-of-distribution detection score for variational auto-encoder. Adv. Neural. Inf. Process. Syst. 33, 20685–20696 (2020)

    Google Scholar 

  8. Denouden, T., Salay, R., Czarnecki, K., and Abdelzad, V. Phan, B., Vernekar, S.: Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance (2018)

    Google Scholar 

  9. Hampel, Frank R: Robust statistics: a brief introduction and overview. Seminar für Statistik, Eidgenössische Technische Hochschule,vol 04 (2001)

    Google Scholar 

  10. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: International Conference on Machine Learning, pp. 1100–1109 (2016)

    Google Scholar 

  11. Yang, X., Huang, K., Goulermas, J.Y., Zhang, R.: Joint learning of unsupervised dimensionality reduction and gaussian mixture model. Springer 45, 791–806 (2017)

    Google Scholar 

  12. Huber, P.J., 2004. Robust statistics (Vol. 523). John Wiley and Sons

    Google Scholar 

  13. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  14. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 665-674) (2017)

    Google Scholar 

  15. Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: Deep kernelized autoencoders. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 419–430. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_35

    Chapter  Google Scholar 

  16. Fan, H., Zhang, F., Wang, R., Xi, L., Li, Z.: Correlation-aware deep generative model for unsupervised anomaly detection. In: Lauw, H.W., et al. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 688–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_52

    Chapter  Google Scholar 

  17. Fort, S., Ren, J., Lakshminarayanan, B.: Exploring the limits of out-of-distribution detection. Adv. Neural. Inf. Process. Syst. 34, 7068–7081 (2021)

    Google Scholar 

  18. Pang, G., Shen, C., Cao, L., Van Den Hengel, A.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021)

    Article  Google Scholar 

  19. Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. arXiv preprint arXiv:1912.12186 (2019)

  20. Ghorbani, H.: Mahalanobis distance and its application for detecting multivariate outliers. Facta. Univ. Ser. Math. Inform. 34(3), 583–95 (2019)

    MathSciNet  Google Scholar 

  21. Laforgue, P., Clémençon, S., d’Alché-Buc, F.: Autoencoding any data through kernel autoencoders. In: The 22nd International Conference on Artificial Intelligence and Statistics, (pp. 1061-1069). PMLR (2019)

    Google Scholar 

  22. Erhan, L., et al.: Smart anomaly detection in sensor systems: a multi-perspective review. Inf. Fusion 67, 64–79 (2021)

    Article  Google Scholar 

  23. Koner, R., Sinhamahapatra, P., Roscher, K., Günnemann, S., Tresp, V.: OODformer: Out-of-distribution detection transformer. arXiv preprint arXiv:2107.08976 (2021)

  24. Ando, S., Ayaka, Y.: Anomaly detection via few-shot learning on normality. In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I, pp. 275-290. Cham: Springer International Publishing, 2023 https://doi.org/10.1007/978-3-031-26387-3_17

Download references

Acknowledgment

We would like to thank Virginia Tech National Security Institute (VTNSI) for supporting our work and Dr. Lamine Mili (ECE, Virginia Tech) for the introductory course on Robust Statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmaksha Roy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2425 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, P., Singhal, H., O’Shea, T.J., Jin, M. (2024). Latent Space Correlation-Aware Autoencoder for Anomaly Detection in Skewed Data. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics