Skip to main content

TOPOMA: Time-Series Orthogonal Projection Operator with Moving Average for Interpretable and Training-Free Anomaly Detection

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14645))

Included in the following conference series:

  • 193 Accesses

Abstract

We present TOPOMA, a time-series orthogonal projection operator with moving average that can identify anomalous points for multivariate time-series, without requiring any labels nor training. Despite intensive research the problem has received, it remains challenging due to 1) scarcity of labels, 2) occurrence of non-stationarity in online streaming, and 3) trust issues posed by the black-box nature of deep learning models. We tackle these issues by avoiding training a complex model on historical data as in previous work, rather we track a moving average estimate of variable subspaces that can compute the deviation of each time step via orthogonal projection onto the subspace. Further, we propose to replace the popular yet less principled global thresholding function of anomaly scores used in previous work with an adaptive one that can bound the occurrence of anomalous events to a given small probability. Our algorithm is shown to compare favourably with deep learning methods while being transparent to interpret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

    Book  Google Scholar 

  2. Ahmed, C.M., Palleti, V.R., Mathur, A.P.: WADI: a water distribution testbed for research in the design of secure cyber physical systems. In: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, pp. 25–28 (2017)

    Google Scholar 

  3. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  4. Asatiani, A., et al.: Challenges of explaining the behavior of black-box AI systems. MIS Q. Exec. 19(4), 259–278 (2020)

    Article  Google Scholar 

  5. Aydin, I., Karaköse, M., Akin, E.: A robust anomaly detection in pantograph-catenary system based on mean-shift tracking and foreground detection. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4444–4449. IEEE (2013)

    Google Scholar 

  6. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T.: Automated anomaly detection in large sequences. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1834–1837. IEEE (2020)

    Google Scholar 

  7. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IOT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2019)

    Article  Google Scholar 

  8. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  9. Desforges, M., Jacob, P., Cooper, J.: Applications of probability density estimation to the detection of abnormal conditions in engineering. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 212(8), 687–703 (1998)

    Article  Google Scholar 

  10. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hogben, L.: Handbook of linear algebra. CRC press (2006)

    Google Scholar 

  12. Joshi, M.V., Agarwal, R.C., Kumar, V.: Predicting rare classes: can boosting make any weak learner strong? In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 297–306 (2002)

    Google Scholar 

  13. Käding, C., Rodner, E., Freytag, A., Denzler, J.: Fine-tuning deep neural networks in continuous learning scenarios. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10118, pp. 588–605. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54526-4_43

    Chapter  Google Scholar 

  14. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 157–166 (2005)

    Google Scholar 

  15. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  16. Liang, H., et al.: Robust unsupervised anomaly detection via multi-time scale DCGANS with forgetting mechanism for industrial multivariate time series. Neurocomputing 423, 444–462 (2021)

    Article  Google Scholar 

  17. Liu, Y., Lin, Y., Xiao, Q., Hu, G., Wang, J.: Self-adversarial variational autoencoder with spectral residual for time series anomaly detection. Neurocomputing 458, 349–363 (2021)

    Article  Google Scholar 

  18. Ma, D., Yuan, Y., Wang, Q.: Hyperspectral anomaly detection via discriminative feature learning with multiple-dictionary sparse representation. Remote Sens. 10(5), 745 (2018)

    Article  Google Scholar 

  19. Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research and training on ICS security. In: 2016 International Workshop on Cyber-physical systems for Smart Water Networks (CySWater), pp. 31–36. IEEE (2016)

    Google Scholar 

  20. Namuduri, S., Narayanan, B.N., Davuluru, V.S.P., Burton, L., Bhansali, S.: Deep learning methods for sensor based predictive maintenance and future perspectives for electrochemical sensors. J. Electrochem. Soc. 167(3), 037552 (2020)

    Article  Google Scholar 

  21. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  22. Saw, J.G., Yang, M.C., Mo, T.C.: Chebyshev inequality with estimated mean and variance. Am. Stat. 38(2), 130–132 (1984)

    Article  MathSciNet  Google Scholar 

  23. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING, Tech. rep. (2003)

    Google Scholar 

  24. Tang, Z., Chen, Z., Bao, Y., Li, H.: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Struct. Control. Health Monit. 26(1), e2296 (2019)

    Article  Google Scholar 

  25. Welford, B.: Note on a method for calculating corrected sums of squares and products. Technometrics 4(3), 419–420 (1962)

    Article  MathSciNet  Google Scholar 

  26. Xia, X., et al.: GAN-based anomaly detection: a review. Neurocomputing (2022)

    Google Scholar 

  27. Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)

    Google Scholar 

  28. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)

    Google Scholar 

  29. Zhou, Y., Liang, X., Zhang, W., Zhang, L., Song, X.: VAE-based deep SVDD for anomaly detection. Neurocomputing 453, 131–140 (2021)

    Article  Google Scholar 

  30. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanfeng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Huang, Y. (2024). TOPOMA: Time-Series Orthogonal Projection Operator with Moving Average for Interpretable and Training-Free Anomaly Detection. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics