Skip to main content

NETEFFECT: Discovery and Exploitation of Generalized Network Effects

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14645))

Included in the following conference series:

  • 207 Accesses

Abstract

Given a large graph with few node labels, how can we (a) identify whether there is generalized network-effects  (GNE) or not, (b) estimate GNE to explain the interrelations among node classes, and (c) exploit GNE efficiently to improve the performance on downstream tasks? The knowledge of GNE is valuable for various tasks like node classification and targeted advertising. However, identifying GNE such as homophily, heterophily or their combination is challenging in real-world graphs due to limited availability of node labels and noisy edges. We propose NetEffect, a graph mining approach to address the above issues, enjoying the following properties: (i) Principled: a statistical test to determine the presence of GNE in a graph with few node labels; (ii) General and Explainable: a closed-form solution to estimate the specific type of GNE observed; and (iii) Accurate and Scalable: the integration of GNE for accurate and fast node classification. Applied on real-world graphs, NetEffect discovers the unexpected absence of GNE in numerous graphs, which were recognized to exhibit heterophily. Further, we show that incorporating GNE is effective on node classification. On a million-scale real-world graph, NetEffect achieves over 7\(\mathbf {\times }\) speedup (14 minutes vs. 2 hours) compared to most competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mengchillee/NetEffect.

  2. 2.

    https://arxiv.org/abs/2301.00270.

References

  1. Abu-El-Haija, S., Et al. : Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: ICML, pp. 21–29 (2019)

    Google Scholar 

  2. Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks mix faster. Commun. Contemp. Math. 9(04), 585–603 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. In: ICLR (2021)

    Google Scholar 

  4. Eswaran, D., Kumar, S., Faloutsos, C.: Higher-order label homogeneity and spreading in graphs. In: The Web Conference, pp. 2493–2499 (2020)

    Google Scholar 

  5. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  6. Gatterbauer, W., Günnemann, S., Koutra, D., Faloutsos, C.: Linearized and single-pass belief propagation. PVLDB 8(5), 581–592 (2015)

    Google Scholar 

  7. Ghosh, A., Monsivais, D., Bhattacharya, K., Dunbar, R.I., Kaski, K.: Quantifying gender preferences in human social interactions using a large cellphone dataset. EPJ Data Sci. 8(1), 9 (2019)

    Article  Google Scholar 

  8. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. NeurIPS 33, 22118–22133 (2020)

    Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  10. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

  11. Koutra, D., Ke, T.-Y., Kang, U., Chau, D.H., Pao, H.-K.K., Faloutsos, C.: Unifying guilt-by-association approaches: theorems and fast algorithms. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 245–260. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_16

    Chapter  Google Scholar 

  12. Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. Association for Computing Machinery, New York (2005)

    Google Scholar 

  13. Lim, D., Benson, A.R.: Expertise and dynamics within crowdsourced musical knowledge curation: A case study of the genius platform. arXiv preprint arXiv:2006.08108 (2020)

  14. Lim, D., et al.: Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. NeurIPS 34, 20887–20902 (2021)

    Google Scholar 

  15. Lin, M., Lucas, H.C., Jr., Shmueli, G.: Research commentary-too big to fail: large samples and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013)

    Article  Google Scholar 

  16. Ma, Y., Liu, X., Shah, N., Tang, J.: Is homophily a necessity for graph neural networks? In: ICLR (2022)

    Google Scholar 

  17. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding (2019)

    Google Scholar 

  18. Rozemberczki, B., Sarkar, R.: Twitch gamers: a dataset for evaluating proximity preserving and structural role-based node embeddings. arXiv preprint arXiv:2101.03091 (2021)

  19. Shepard, R.N.: Toward a universal law of generalization for psychological science. Sci. 237(4820), 1317–1323 (1987)

    Article  MathSciNet  Google Scholar 

  20. Takac, L., Zabovsky, M.: Data analysis in public social networks. In: International Scientific Conference and International Workshop Present Day Trends of Innovations. vol. 1 (2012)

    Google Scholar 

  21. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Phys. A 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  22. Wang, K., Shen, Z., Huang, C., Wu, C.H., Dong, Y., Kanakia, A.: Microsoft academic graph: when experts are not enough. Quant. Sci. Stud. 1(1), 396–413 (2020)

    Article  Google Scholar 

  23. Wasserman, L., Ramdas, A., Balakrishnan, S.: Universal inference. Proc. Natl. Acad. Sci. 117(29), 16880–16890 (2020)

    Article  MathSciNet  Google Scholar 

  24. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  25. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. NeurIPS 34, 7793–7804 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Chieh Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, MC., Shekhar, S., Yoo, J., Faloutsos, C. (2024). NETEFFECT: Discovery and Exploitation of Generalized Network Effects. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics