Skip to main content

Clustering-Friendly Representation Learning for Enhancing Salient Features

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14645))

Included in the following conference series:

  • 223 Accesses

Abstract

Recently, representation learning with contrastive learning algorithms has been successfully applied to challenging unlabeled datasets. However, these methods are unable to distinguish important features from unimportant ones under simply unsupervised settings, and definitions of importance vary according to the type of downstream task or analysis goal, such as the identification of objects or backgrounds. In this paper, we focus on unsupervised image clustering as the downstream task and propose a representation learning method that enhances features critical to the clustering task. We extend a clustering-friendly contrastive learning method and incorporate a contrastive analysis approach, which utilizes a reference dataset to separate important features from unimportant ones, into the design of loss functions. Conducting an experimental evaluation of image clustering for three datasets with characteristic backgrounds, we show that for all datasets, our method achieves higher clustering scores compared with conventional contrastive analysis and deep clustering methods.

T. Oshima and K. Takagi—First two authors have equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abid, A., Zhang, M.J., Bagaria, V.K., Zou, J.: Exploring patterns enriched in a dataset with contrastive principal component analysis. Nat. Commun. 9, 2134 (2018)

    Article  Google Scholar 

  2. Abid, A., Zou, J.: Contrastive variational autoencoder enhances salient features. arXiv:1902.04601 (2019)

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NeurIPS, pp. 9912–9924. Curran Associates, Inc. (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758. IEEE (2021)

    Google Scholar 

  6. Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor matching for deep clustering. In: CVPR, pp. 13693–13702 (2021)

    Google Scholar 

  7. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  8. Dirie, A.H., Abid, A., Zou, J.: Contrastive multivariate singular spectrum analysis. In: 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1122–1127 (2019)

    Google Scholar 

  9. Ge, R., Zou, J.: Rich component analysis. In: ICML, pp. 1502–1510. PMLR (2016)

    Google Scholar 

  10. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: AAAI, pp. 8547–8555. AAAI Press (2021)

    Google Scholar 

  11. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  12. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018)

  13. Niu, C., Shan, H., Wang, G.: SPICE: semantic pseudo-labeling for image clustering. arXiv:2103.09382 (2022)

  14. Park, S., et al.: Improving unsupervised image clustering with robust learning. In: CVPR (2021)

    Google Scholar 

  15. Piosenka, G.: Birds 400 - species image classification (2022)

    Google Scholar 

  16. Rougetet, A.: Landscape pictures (2020)

    Google Scholar 

  17. Shota, M., Yukako, T.: Application of contrastive representation learning to unsupervised defect classification in semiconductor manufacturing. In: AEC/APC Symposium Asia 2021 (2021)

    Google Scholar 

  18. Tao, Y., Takagi, K., Nakata, K.: Clustering-friendly representation learning via instance discrimination and feature decorrelation. In: ICLR (2021)

    Google Scholar 

  19. Tsai, T.W., Li, C., Zhu, J.: Mice: mixture of contrastive experts for unsupervised image clustering. In: ICLR (2021)

    Google Scholar 

  20. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16

    Chapter  Google Scholar 

  21. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742. IEEE (2018)

    Google Scholar 

  22. Li, Y., Yang, M., Peng, D., Li, T., Huang, J., Peng, X.: Twin contrastive learning for online clustering. Int. J. Comput. Vision 130(9), 2205–2221 (2022)

    Article  Google Scholar 

  23. Zhou, S., et al.: A comprehensive survey on deep clustering: taxonomy, challenges, and future directions (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Oshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oshima, T., Takagi, K., Nakata, K. (2024). Clustering-Friendly Representation Learning for Enhancing Salient Features. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics