Skip to main content

Instance-Ambiguity Weighting for Multi-label Recognition with Limited Annotations

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14645))

Included in the following conference series:

  • 224 Accesses

Abstract

Multi-label recognition with limited annotations has been gaining attention recently due to the costs of thorough dataset annotation. Despite significant progress, current methods for simulating partial labels utilize a strategy that uniformly omits labels, which inadequately prepares models for real-world inconsistencies and undermines their generalization performance. In this paper, we consider a more realistic partial label setting that correlates label absence with an instance’s ambiguity, and propose the novel Ambiguity-Aware Instance Weighting (AAIW) to specifically address the performance decline caused by such ambiguous instances. This strategy dynamically modulates instance weights to prioritize learning from less ambiguous instances initially, then gradually increasing the weight of complex examples without the need for predetermined sequencing of data. This adaptive weighting not only facilitates a more natural learning progression but also enhances the model’s ability to generalize from increasingly complex patterns. Experiments on standard multi-label recognition benchmarks demonstrate the advantages of our approach over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, M., Lee, S.W.: Human action recognition using multi-view image sequences. In: ICAFGR, pp. 523 – 528 (2006)

    Google Scholar 

  2. Baruch, E.B., et al.: Asymmetric loss for multi-label classification. In: ICCV, pp. 82–91 (2020)

    Google Scholar 

  3. Ben-Baruch, E., et al.: Multi-label classification with partial annotations using class-aware selective loss. In: CVPR, pp. 4754–4762 (2021)

    Google Scholar 

  4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48 (2009)

    Google Scholar 

  5. Chen, M., Zheng, A.X., Weinberger, K.Q.: Fast image tagging. In: ICML (2013)

    Google Scholar 

  6. Chen, T., Pu, T., Wu, H., Xie, Y., Lin, L.: Structured semantic transfer for multi-label recognition with partial labels. In: AAAI, pp. 339–346 (2022)

    Google Scholar 

  7. Chen, T., Xu, M., Hui, X., Wu, H., Lin, L.: Learning semantic-specific graph representation for multi-label image recognition. In: ICCV, pp. 522–531 (2019)

    Google Scholar 

  8. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: CVPR (2019)

    Google Scholar 

  9. Cole, E., Mac Aodha, O., Lorieul, T., Perona, P., Morris, D., Jojic, N.: Multi-label learning from single positive labels. In: CVPR (2021)

    Google Scholar 

  10. Ding, Z., et al.: Exploring structured semantic prior for multi label recognition with incomplete labels. In: CVPR, pp. 3398–3407 (2023)

    Google Scholar 

  11. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  13. He, S., Guo, T., Dai, T., Qiao, R., Shu, X., Ren, B., Xia, S.T.: Open-vocabulary multi-label classification via multi-modal knowledge transfer. In: AAAI (2023)

    Google Scholar 

  14. Huynh, D., Elhamifar, E.: Interactive multi-label CNN learning with partial labels. In: CVPR (2020)

    Google Scholar 

  15. Kapoor, A., Jain, P., Viswanathan, R.: Multilabel classification using bayesian compressed sensing. In: NeurIPS, pp. 2645–2653 (2012)

    Google Scholar 

  16. Kim, Y., Kim, J., Akata, Z., Lee, J.: Large loss matters in weakly supervised multi-label classification. In: CVPR, pp. 14136–14145 (2022)

    Google Scholar 

  17. Kim, Y., Kim, J.M., Jeong, J., Schmid, C., Akata, Z., Lee, J.: Bridging the gap between model explanations in partially annotated multi-label classification. In: CVPR, pp. 3408–3417 (2023)

    Google Scholar 

  18. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lee, M.S., Yang, Y.M., Lee, S.W.: Automatic video parsing using shot boundary detection and camera operation analysis. Pattern Recogn. 34, 711–719 (2001)

    Article  Google Scholar 

  20. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV, pp. 740–755 (2014)

    Google Scholar 

  21. Litrico, M., Del Bue, A., Morerio, P.: Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation. In: CVPR (2023)

    Google Scholar 

  22. Liu, F., Xiang, T., Hospedales, T.M., Yang, W., Sun, C.: Semantic regularisation for recurrent image annotation. In: CVPR, pp. 4160–4168 (2016)

    Google Scholar 

  23. Liu, W., Wang, H., Shen, X., Tsang, I.W.H.: The emerging trends of multi-label learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7955–7974 (2020)

    Article  Google Scholar 

  24. Mitchell, H.B., Schaefer, P.A.: A “soft” k-nearest neighbor voting scheme. Int. J. Intell. Syst. 16(4), 459–468 (2001)

    Google Scholar 

  25. Nam, W.J., Gur, S., Choi, J., Wolf, L., Lee, S.W.: Relative attributing propagation: interpreting the comparative contributions of individual units in deep neural networks. In: AAAI, pp. 2501–2508 (2020)

    Google Scholar 

  26. Park, L.A.F., Simoff, S.: Using entropy as a measure of acceptance for multi-label classification. In: Advances in Intelligent Data Analysis XIV, pp. 217–228 (2015)

    Google Scholar 

  27. Pu, T., Chen, T., Wu, H., Lin, L.: Semantic-aware representation blending for multi-label image recognition with partial labels. In: AAAI, pp. 2091–2098 (2022)

    Google Scholar 

  28. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  29. Rajeswar, S., López, P.R., Singhal, S., Vázquez, D., Courville, A.C.: Multi-label iterated learning for image classification with label ambiguity. In: CVPR, pp. 4773–4783 (2021)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  31. Sun, X., Hu, P., Saenko, K.: Dualcoop: fast adaptation to multi-label recognition with limited annotations. In: NeurIPS (2022)

    Google Scholar 

  32. Vasisht, D., Damianou, A., Varma, M., Kapoor, A.: Active learning for sparse bayesian multilabel classification. In: SIGKDD, pp. 472–481 (2014)

    Google Scholar 

  33. Wang, Y., et al.: Multi-label classification with label graph superimposing. In: AAAI, vol. 34, pp. 12265–12272 (2020)

    Google Scholar 

  34. Wu, B., Liu, Z., Wang, S., Hu, B.G., Ji, Q.: Multi-label learning with missing labels. In: ICPR, pp. 1964–1968 (2014)

    Google Scholar 

  35. Zhang, B., et al.: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling. In: NeurIPS, vol. 34, pp. 18408–18419 (2021)

    Google Scholar 

  36. Zhang, X., Song, Y., Zuo, F., Wang, X.: Towards imbalanced large scale multi-label classification with partially annotated labels. In: SERA, pp. 195–200 (2023)

    Google Scholar 

  37. Zhang, Y., et al.: Simple and robust loss design for multi-label learning with missing labels. arXiv abs/2112.07368 (2021)

    Google Scholar 

  38. Zhou, D., Chen, P., Wang, Q., Chen, G., Heng, P.A.: Acknowledging the unknown for multi-label learning with single positive labels. arXiv abs/2203.16219 (2022)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2024 (No.912911601) and was partly supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant, funded by the Korea government (MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program (Korea University)) and NCSOFT corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Whan Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shrewsbury, D., Kim, S., Kim, YE., Kong, H., Lee, SW. (2024). Instance-Ambiguity Weighting for Multi-label Recognition with Limited Annotations. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics