Skip to main content

Unveiling the Potential of Age Hardened Aluminum Alloys: Strengthening Solutions for Engineering Challenges

  • Chapter
  • First Online:
Hybrid Composite Materials

Abstract

Aluminium alloys are commonly age-hardened to improve their characteristics, and hence their suitability for usage in a wide range of engineering applications. The objective of this chapter is to elucidate the capabilities of age-hardened aluminium alloys, offering perspectives on their methods and their utilisation in addressing engineering obstacles. The relevance of age hardening as a method for enhancing the characteristics of aluminium alloys is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anijdan, S.H Mousavi, D. Sadeghi-Nezhad, H. Lee, W. Shin, N. Park, M.J. Nayyeri, H.R. Jafarian, A.R. Eivani, TEM study of S'hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: influence on the microstructural evolution, tensile properties & electrical conductivity. J. Mater. Res. Technol. 13, 798–807 (2021)

    Google Scholar 

  2. O. Engler, C. Schäfer, O.R. Myhr, Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA 6016. Mater. Sci. Eng. A 639, 65–74 (2015)

    Article  CAS  Google Scholar 

  3. S.B. Pankade, D.S. Khedekar, C.L. Gogte, The influence of heat treatments on electrical conductivity and corrosion performance of AA 7075–T6 aluminium alloy. Proc. Manufact. 20, 53–58 (2018)

    Article  Google Scholar 

  4. I. Westermann, O.S. Hopperstad, K. Marthinsen, B. Holmedal, Ageing and work-hardening behaviour of a commercial AA7108 aluminium alloy. Mater. Sci. Eng. A 524(1–2), 151–157 (2015)

    Google Scholar 

  5. B. Malek, C. Mabru, M. Chaussumier, Fatigue behavior of 2618–T851 aluminum alloy under uniaxial and multiaxial loadings. Int. J. Fatigue 131, 105322 (2020)

    Article  CAS  Google Scholar 

  6. Y.C. Lin, J.L. Zhang, M.S. Chen, Evolution of precipitates during two-stage stress-aging of an Al-Zn-Mg-Cu alloy. J. Alloy. Compd. 684, 177–187 (2016)

    Article  CAS  Google Scholar 

  7. K. Strobel, M.D. Lay, M.A. Easton, L. Sweet, S. Zhu, N.C. Parson, A.J. Hill, Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060. Mater Charact 111, 43–52 (2016)

    Article  CAS  Google Scholar 

  8. S. Mishra, V.K. Beura, A. Singh, M. Yadava, N. Nayan, Rate sensitive behavior of obstacles in age hardenable aluminum alloys. Mater. Sci. Eng. A 729, 102–105 (2018)

    Article  CAS  Google Scholar 

  9. S. Ballupete Nagaraju, M. Kodigarahalli Somashekara, M. Puttegowda, H. Manjulaiah, C.R. Kini, V.V. Channarayapattana, Effect of B4C/Gr on hardness and wear behavior of Al2618 based hybrid composites through Taguchi and artificial neural network analysis. Catalysts 12(12), 1654 (2022)

    Article  CAS  Google Scholar 

  10. C. Sigli, F. De Geuser, A. Deschamps, J. Lépinoux, M. Perez, Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening. Comptes Rendus Physique 19(8), 688–709 (2018)

    Google Scholar 

  11. S.M. Anijdan, D. Sadeghi-Nezhad, H. Lee, W. Shin, N. Park, M.J. Nayyeri, H.R. Jafarian, A.R. Eivani, TEM study of S’hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: influence on the microstructural evolution, tensile properties & electrical conductivity. J. Market. Res. 13, 798–807 (2021)

    Google Scholar 

  12. I. Westermann, O.S. Hopperstad, K. Marthinsen, B. Holmedal, Ageing and work-hardening behaviour of a commercial AA7108 aluminium alloy. Mater. Sci. Eng. A 524(1–2), 151–157 (2009)

    Article  Google Scholar 

  13. C. Rockenhäuser, S. Schriever, P. von Hartrott, B. Piesker, B. Skrotzki, Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep. Mater. Sci. Eng. A 716, 78–86 (2018)

    Article  Google Scholar 

  14. G. Lu, B. Sun, J. Wang, Y. Liu, C. Liu, High-temperature age-hardening behavior of Al–Mg–Si alloys with varying Sn contents. J. Market. Res. 14, 2165–2173 (2021)

    CAS  Google Scholar 

  15. C.C. Nwobi-Okoye, B.Q. Ochieze, Age hardening process modeling and optimization of aluminum alloy A356/Cow horn particulate composite for brake drum application using RSM. ANN Simul. Annealing. Def. Technol. 14(4), 336–345 (2018)

    Google Scholar 

  16. H. Ravinath, I. Ahammed, P.V.R.A.S. Harigovind, K.V. Shankar, S. Nandakishor, Impact of aging temperature on the metallurgical and dry sliding wear behaviour of LM25/Al2O3 metal matrix composite for potential automotive application. Intern. J. Lightweight Mater. Manuf. 6(3), 416-433 (2023)

    Google Scholar 

  17. M. Yaşar, Y. Altunpak, The effect of aging heat treatment on the sliding wear behaviour of Cu–Al–Fe alloys. Mater. Des. 30(3), 878–884 (2009)

    Article  Google Scholar 

  18. D. Odabaş, ŞÜ.K.R.Ü. Su, A comparison of the reciprocating and continuous two-body abrasive wear behavior of solution-treated and age-hardened 2014 Al alloy. Wear 208(1–2), 25–35 (1997)

    Article  Google Scholar 

  19. M.M. Benal, H.K. Shivanand, Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites. Wear 262(5–6), 759–763 (2007)

    Article  CAS  Google Scholar 

  20. R. Singh, P. Uddin, R.N. Rai, An investigative study of dry sliding wear behaviour of cold deformed and as cast: Al5083. Mater. Today Proc. 26, 1686–1693 (2020)

    Article  CAS  Google Scholar 

  21. E. Soujanya, B.N. Sarada, Effects of age hardening on the mechanical properties of high silicon stainless steel. Mater. Today Proc. 46, 4362–4367 (2021)

    Article  CAS  Google Scholar 

  22. P. Cavaliere, Hot and warm forming of 2618 aluminium alloy. J. Light. Met. 2(4), 247–252 (2002)

    Article  Google Scholar 

  23. N.M. Kumar, S.S. Kumaran, L.A. Kumaraswamidhas, Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures. Alex. Eng. J. 55(1), 19–36 (2016)

    Article  Google Scholar 

  24. A.A. Adeleke, M. Oki, I.K. Anyim, P.P. Ikubanni, A.A. Adediran, A.A. Balogun, T.A. Orhadahwe, P.O. Omoniyi, A.S. Olabisi, E.T. Akinlabi, Recent development in casting technology: a pragmatic review. Revue des Composites et des Matériaux Avancés 32(2) (2022)

    Google Scholar 

  25. R.G. Bhandare, P.M. Sonawane, Preparation of aluminium matrix composite by using stir casting method. Intern. J. Eng. Adv. Technol. (IJEAT) 3(3), 61–65 (2013)

    Google Scholar 

  26. J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92, 1–7 (1999)

    Article  Google Scholar 

  27. A. Kumar, R.C. Singh, R. Chaudhary, Recent progress in production of metal matrix composites by stir casting process: an overview. Mater. Today Proc. 21, 1453–1457 (2020)

    Article  CAS  Google Scholar 

  28. P. Senthil, K.S. Amirthagadeswaran, Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method. J. Mech. Sci. Technol. 26, 1141–1147 (2012)

    Article  Google Scholar 

  29. M. Zhang, W.W. Zhang, H.D. Zhao, D.T. Zhang, Y.Y. Li, Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting. Trans. Nonf. Metals Soc. China 17(3), 496–501 (2007)

    Article  Google Scholar 

  30. P. Vijian, V.P. Arunachalam, Experimental study of squeeze casting of gunmetal. J. Mater. Process. Technol. 170(1–2), 32–36 (2005)

    Article  CAS  Google Scholar 

  31. B. Aleman, L. Gutiérrez, J.J. Urcola, Interface microstructures in diffusion bonding of titanium alloys to stainless and low alloy steels. Mater. Sci. Technol. 9(8), 633–641 (1993)

    Article  CAS  Google Scholar 

  32. K.O. Cooke, A.M. Atieh, Current trends in dissimilar diffusion bonding of titanium alloys to stainless steels, aluminium and magnesium. J. Manufact. Mater. Proc. 4(2), 39 (2020)

    CAS  Google Scholar 

  33. J. Alias, W.S.W. Harun, H.M. Ayu, A review on the preparation of magnesium-based alloys prepared by powder metallurgy and the evolution of microstructure and mechanical properties. Key Eng. Mater. 796, 3–10 (2019)

    Article  Google Scholar 

  34. G. Manohar, A. Dey, K.M. Pandey, S.R. Maity, Fabrication of metal matrix composites by powder metallurgy: a review. In AIP conference proceedings (Vol. 1952, No. 1, p. 020041). AIP Publishing LLC (2018)

    Google Scholar 

  35. T. Wang, Z. Tang, L. Yang, L. Wu, H. Yan, C. Liu, Y. Ma, W. Liu, A novel technique for preparing Al/Mg alloy by the combined method of powder metallurgy and rolling. Mater. Lett. 314, 131793 (2022)

    Article  CAS  Google Scholar 

  36. B. Deepanraj, N. Senthilkumar, T. Tamizharasan, Sintering parameters consequence on microstructure and hardness of copper alloy prepared by powder metallurgy. Mater. Today Proc. 80, 2468–2473 (2023)

    Article  CAS  Google Scholar 

  37. Z.Z. Fang, J.D. Paramore, P. Sun, K.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Powder metallurgy of titanium–past, present, and future. Int. Mater. Rev. 63(7), 407–459 (2018)

    Article  CAS  Google Scholar 

  38. R.Q. Guo, P.K. Rohatgi, D. Nath, Preparation of aluminium-fly ash particulate composite by powder metallurgy technique. J. Mater. Sci. 32, 3971–3974 (1997)

    Article  CAS  Google Scholar 

  39. Z.X. Li, M. Zhan, X.G. Fan, X.X. Wang, F. Ma, Age hardening behaviors of spun 2219 aluminum alloy component. J. Market. Res. 9(3), 4706–4716 (2020)

    CAS  Google Scholar 

  40. W. Yu, L. Zhan, Y. Xu, K. Chen, Y. Yang, L. Xu, N. Peng, B. Ma, C. Liu, Z. Chen, Temperature-dependent creep aging behavior of 2A14 aluminum alloy. J. Market. Res. 19, 1343–1354 (2022)

    CAS  Google Scholar 

  41. J.A.N.G. Jae-Ho, N.A.M. Dae-Geun, P.A.R.K. Yong-Ho, P.A.R.K. Ik-Min, Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al–Cu alloy. Trans. Nonf. Metals Soc. China 23(3), 631–635 (2013)

    Article  Google Scholar 

  42. J.H. Kim, J.H. Jeun, H.J. Chun, Y.R. Lee, J.T. Yoo, J.H. Yoon, H.S. Lee, Effect of precipitates on mechanical properties of AA2195. J. Alloy. Compd. 669, 187–198 (2016)

    Article  CAS  Google Scholar 

  43. J. Wang, D. Yi, X. Su, F. Yin, Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618. Mater Charact 59(7), 965–968 (2008)

    Article  CAS  Google Scholar 

  44. K.M. Singh, A.K. Chauhan, Effect of age hardening on sliding wear behaviour of Al7075/B4C nanocomposites. Mater. Today Proc. 47, 3865–3870 (2021)

    Article  CAS  Google Scholar 

  45. S.P. Chikkegouda, B. Gurudath, B.N. Sharath, S. Karthik, R.S. Mahale, Mechanical and tribological characteristics of aluminium 2618 matrix composite reinforced with boron carbide. Biointerf. Res. Appl. Chem. 12(4) (2022)

    Google Scholar 

  46. S.S. Liang, S.P. Wen, J. Xu, X.L. Wu, K.Y. Gao, H. Huang, Z.R. Nie, The influence of Sc–Si clusters on aging hardening behavior of dilute Al-Sc-(Zr)-(Si) alloy. J. Alloy. Compd. 842, 155826 (2020)

    Article  CAS  Google Scholar 

  47. S. Dey, N. Sultana, M.S. Kaiser, P. Dey, S. Datta, Computational intelligence-based design of age-hardenable aluminium alloys for different temperature regimes. Mater. Des. 92, 522–534 (2016)

    Article  CAS  Google Scholar 

  48. Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD study

    Google Scholar 

  49. Z. Chen, K. Yan, C. Ren, S. Naseem, Precipitation sequence and hardening effect in 7A85 aluminum alloy. J. Alloy. Compd. 875, 159950 (2021)

    Article  CAS  Google Scholar 

  50. G.R. Arpitha, H. Mohit, P. Madhu, A. Verma, Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology. Biomass Conversion and Biorefinery, pp. 1–19 (2023). https://doi.org/10.1007/s13399-023-03886-7

  51. S. Chaturvedi, A. Verma, S.K. Singh, S. Ogata, EAM inter-atomic potential—its implication on nickel, copper, and aluminum (and their alloys). In forcefields for atomistic-scale simulations: materials and applications (pp. 133–156). Singapore: Springer Nature Singapore (2022). https://doi.org/10.1007/978-981-19-3092-8_7

  52. S. Chaturvedi, A. Verma, S.K. Sethi, S Ogata, Defect energy calculations of nickel, copper and aluminium (and Their Alloys): molecular dynamics approach. In forcefields for atomistic-scale simulations: materials and applications (pp. 157–186). Singapore: Springer Nature Singapore (2022). https://doi.org/10.1007/978-981-19-3092-8_8

  53. B.N. Sharath, P. Madhu, A. Verma, Enhancing tribological performance: a review of ceramic reinforced aluminium hybrid composites for high-temperature engineering applications. Hybrid Adv. 4, 100094 (2023). https://doi.org/10.1016/j.hybadv.2023.100094

    Article  Google Scholar 

  54. M.M. Shariff, G.R. Arpitha, N. Jain, U. Shankar, A. Verma, N.D. Shivakumar, A comparative study on the effect of reinforcing boron nitride/alumina in epoxy-based hybrid composite with Millettia pinnata leaf powder and glass sheets: experimental fabrication, mechanical and micro-structural characterization. Hybrid Adv. 4, 100095 (2023). https://doi.org/10.1016/j.hybadv.2023.100095

    Article  Google Scholar 

  55. J.W. Martin, Precipitation hardening: theory and applications. Butterworth-Heinemann (2012)

    Google Scholar 

  56. P. Dumitraschkewitz, S.S. Gerstl, L.T. Stephenson, P.J. Uggowitzer, S. Pogatscher, Clustering in age-hardenable aluminum alloys. Adv. Eng. Mater. 20(10), 1800255 (2018)

    Article  Google Scholar 

  57. Aditya Kataria, Swati Chaturvedi, Vaibhav Chaudhary, Akarsh Verma, Naman Jain Mavinkere Rangappa Sanjay, Suchart Siengchin, Cellulose fiber-reinforced composites—History of evolution, chemistry, and structure. In Cellulose Fibre Reinforced Composites (pp. 1–22). Woodhead Publishing (2023). https://doi.org/10.1016/B978-0-323-90125-3.00012-4

  58. Swati Chaturvedi, Aditya Kataria, Vaibhav Chaudhary, Akarsh Verma, Naman Jain Mavinkere Rangappa Sanjay, Suchart Siengchin, Bionanocomposites reinforced with cellulose fibers and agro-industrial wastes. In Cellulose Fibre Reinforced Composites (pp. 1–22). Woodhead Publishing (2023). https://doi.org/10.1016/B978-0-323-90125-3.00017-3

  59. A. Verma, S. Ogata, Magnesium based alloys for reinforcing biopolymer composites and coatings: a critical overview on biomedical materials. Adv. Ind. Eng. Polym. Res. 6(4), 341–355 (2023). https://doi.org/10.1016/j.aiepr.2023.01.002

    Article  CAS  Google Scholar 

  60. R. Deji, A. Verma, N. Kaur, B.C. Choudhary, R.K. Sharma, Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater. Today: Proc. 54, 771–776 (2022)

    CAS  Google Scholar 

  61. R. Deji, A. Verma, B.C. Choudhary, R.K. Sharma, New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach. J. Mol. Graph. Model. 111, 108109 (2022)

    Article  Google Scholar 

  62. A. Verma, N. Jain, A. Parashar, V.K. Singh, M.R. Sanjay, S. Siengchin, Lightweight graphene composite materials. In Lightweight Polymer Composite Structures (pp. 1–20). CRC Press (2020)

    Google Scholar 

  63. A. Verma, A. Parashar, Characterization of 2D nanomaterials for energy storage. In Recent Advances in Theoretical, Applied, Computational and Experimental Mechanics (pp. 221–226). Springer, Singapore (2020)

    Google Scholar 

  64. R. Deji, R. Jyoti, A. Verma, B.C. Choudhary, R.K. Sharma, A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon. Comput. Theor. Chem. 1209, 113592 (2022)

    Article  Google Scholar 

  65. A. Verma, A. Parashar, M. Packirisamy, Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 470, 1085–1092 (2019)

    Article  CAS  Google Scholar 

  66. R. Deji, A. Verma, N. Kaur, B.C. Choudhary, R.K. Sharma, Adsorption chemistry of co-doped graphene nanoribbon and its derivatives towards carbon based gases for gas sensing applications: quantum DFT investigation. Mater. Sci. Semicond. Process. 146, 106670 (2022)

    Article  Google Scholar 

  67. K.N. Bharath, P. Madhu, T.Y. Gowda, A. Verma, M.R. Sanjay, S. Siengchin, Mechanical and chemical properties evaluation of sheep wool fiber–reinforced vinylester and polyester composites. Mater. Perform. Charact. 10(1), 99–109 (2021)

    Article  CAS  Google Scholar 

  68. A. Verma, A. Parashar, S.K. Singh, N. Jain, S.M. Sanjay, S. Siengchin, Modeling and simulation in polymer coatings. In Polymer Coatings (pp. 309–324). CRC Press (2020)

    Google Scholar 

  69. V. Dogra, C. Kishore, A. Mishra, A. Gaur, A. Verma, Sol-Gel preparation and wetting behaviour analysis of hydrophobic Zirconium based nano-coating: implications for solar panel coating. Chem. Eng. J. Adv. 15, 100507 (2023). https://doi.org/10.1016/j.ceja.2023.100507

    Article  CAS  Google Scholar 

  70. T.G.Y.G.S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S.M. Rangappa, S. Siengchin, Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. J. Comp. Sci. 7(6), 242 (2023). https://doi.org/10.3390/jcs7060242

  71. G.R. Arpitha, N. Jain, A. Verma, Banana biofiber and glass fiber reinforced hybrid composite for lightweight structural applications: mechanical, thermal, and microstructural characterization. Biomass Conv. Bioref. 1–10 (2023). https://doi.org/10.1007/s13399-023-04300-y

  72. P. Sati, A. Verma, A. Zindal, S. Chauhan, V.K. Singh, PVA biopolymer-acidic functionalized graphene hybrid nano composite for vibration isolation application: an experimental approach with variable reflux and vacuum timings. Chem. Phy. Impact 6, 100212 (2023). https://doi.org/10.1016/j.chphi.2023.100212

    Article  Google Scholar 

  73. A. Verma, O.K. Johnson, G.B. Thompson, I. Chesser, S. Ogata, E.R. Homer, Insights into factors that affect non-Arrhenius migration of a simulated incoherent Σ3 grain boundary. Acta Mater. 258, 119210 (2023). https://doi.org/10.1016/j.actamat.2023.119210

    Article  CAS  Google Scholar 

  74. S.B. Nagaraju, K. Sathyanarayana, M.K. Somashekara, D.G. Pradeep, M. Puttegowda, A. Verma, Artificial neural networks for predicting mechanical properties of Al2219-B4C-Gr composites with multireinforcements. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. (2023). https://doi.org/10.1177/09544062231196038

    Article  Google Scholar 

  75. S. Sharma, A. Verma, S.M. Rangappa, S. Siengchin, S. Ogata, Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications. J. Market. Res. 26, 5921–5974 (2023). https://doi.org/10.1016/j.jmrt.2023.08.300

    Article  CAS  Google Scholar 

  76. T.L. Dora, S.K. Singh, R.R. Mishra, A. Verma, Role of crystal orientation, temperature, and strain rate on the mechanical characterization of nickel: an atomistic-scale investigation. J. Micromanuf. (2023). https://doi.org/10.1177/25165984231195519

    Article  Google Scholar 

  77. N. Jain, P. Sharma, A. Verma, J. Gupta, Enhancement of thermo-mechanical, creep-recovery, and anti-microbial properties in PVA-based biodegradable films through cross-linking with oxalic acid: implications for packaging application. Biomass Conv. Bioref. 1–10 (2023). https://doi.org/10.1007/s13399-023-04748-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. N. Sharath , P. Madhu or Akarsh Verma .

Editor information

Editors and Affiliations

Ethics declarations

Availability of Data and Materials

Not applicable.

Ethical Approval

Conflict of interest on behalf of all authors, the corresponding author states that there is no conflict of interest.

Authors’ Contribution

All authors have equally participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Funding

The corresponding author “Akarsh Verma” would like to thank the University of Petroleum and Energy Studies, Dehradun, India (SEED Grant program) for the academic support.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharath, B.N. et al. (2024). Unveiling the Potential of Age Hardened Aluminum Alloys: Strengthening Solutions for Engineering Challenges. In: Verma, A., Gupta, H.S., Sethi, S.K. (eds) Hybrid Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2104-7_15

Download citation

Publish with us

Policies and ethics