Skip to main content

Grewia Optiva Natural Fiber Reinforced Composites

  • Chapter
  • First Online:
Hybrid Composite Materials

Abstract

Lignocellulosic fibers are being used as reinforcement of polymeric matrices to fabricate composites over the past decades because of their eco-friendly nature as well as low cost, easy availability, low density, high specific strength and high stiffness. There are many natural fibers like hemp, ramie, banana, sisal, and coir on which a large amount of research has been done. Natural fibers which are abundantly available in specific areas, especially rural areas can also prove to be vital in fulfilling the rising demands of natural fibers along with providing employment to the rural population. One of such underutilized natural fiber is extracted from the stems of Grewia Optiva tree which is abundantly available in Uttarakhand and found only in some parts of sub-Himalayan terrains. This fiber has a great potential to be used as reinforcement to fabricate polymer composites. This book chapter presents the utility of Grewia Optiva as a reinforcement in polymer composites and discusses the fiber extraction methods, lignocellulosic composition, fiber-surface modification methods, thermal, mechanical properties and tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Mohanty, M. Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19–26 (2002)

    Article  CAS  Google Scholar 

  2. S. Begum, S. Fawzia, M.S.J. Hashmi, Polymer matrix composite with natural and synthetic fibres. Adv. Mater. Process. Technol. 6(3), 547–564 (2020)

    Google Scholar 

  3. S. Kappenthuler, S. Seeger, Assessing the long-term potential of fiber reinforced polymer composites for sustainable marine construction. J. Ocean. Eng. Mar. Energy 7, 129–144 (2021)

    Article  Google Scholar 

  4. O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299(1), 9–26 (2014)

    Article  CAS  Google Scholar 

  5. D. Verma, E. Fortunati, Biopolymer processing and its composites: an introduction, in Biomass, Biopolymer-Based Materials, and Bioenergy (Woodhead Publishing, 2019), pp. 3–23

    Google Scholar 

  6. K.M. Babu, Natural textile fibres: Animal and silk fibres, in Textiles and Fashion (Woodhead Publishing 2015), pp. 57–78; J.J. Moses, L. Ammayappan, Growth of textile industry and their issues on environment with. Asian Dyer, 3, 61–67 (2006)

    Google Scholar 

  7. G.S. Mann, N. Azum, A. Khan, M.A. Rub, M.I. Hassan, K. Fatima, A.M. Asiri, Green composites based on animal fiber and their applications for a sustainable future. Polymers 15(3), 601 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.M. Okoro, I.O. Oladele, M.C. Khoathane, Synthesis and characterization of the mechanical properties of high-density polyethylene based composites reinforced with animal fibers. Leonardo J. Sci. 29, 99–112 (2016)

    Google Scholar 

  9. J.K. Pandey, S.H. Ahn, C.S. Lee, A.K. Mohanty, M. Misra, Recent advances in the application of natural fiber based composites. Macromol. Mater. Eng. 295(11), 975–989 (2010)

    Article  CAS  Google Scholar 

  10. M. Ramesh, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, Green composite using agricultural waste reinforcement. Green Compos 21–34 (2021)

    Google Scholar 

  11. C. Maraveas, Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12(5), 1127 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Ndagi, A.T. Kolawole, F.M. Olawale, A. Sulaiman, Investigation of the thermo-physical and mechanical properties of coir and sugarcane bagasse for low temperature insulation. Int. J. Eng. Mater. Manuf. 6(4), 340–356 (2021)

    Google Scholar 

  13. T. Raja, P. Anand, M. Karthik, M. Sundaraj, Evaluation of mechanical properties of natural fibre reinforced composites: a review. Int. J. Mech. Eng. Technol. 8(7), 915–924 (2017)

    Google Scholar 

  14. L.Y. Mwaikambo, M.P. Ansell, The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die angewandte makromolekulare Chemie 272(1), 108–116 (1999)

    Article  CAS  Google Scholar 

  15. R. Ramasamy, K. Obi Reddy, A. Varada Rajulu, Extraction and characterization of calotropis gigantea bast fibers as novel reinforcement for composites materials. J. Nat. Fibers 15(4), 527–538 (2018)

    Article  CAS  Google Scholar 

  16. S. Kumar, K.K.S. Mer, L. Parsad, V.K. Patel, A review on surface modification of bast fibre as reinforcement in polymer composites. Int. J. Mater. Sci. Appl. 6(2), 77–82 (2017)

    Google Scholar 

  17. A. Saleem, L. Medina, M. Skrifvars, L. Berglin, Hybrid polymer composites of bio-based bast fibers with glass, carbon and basalt fibers for automotive applications—a review. Molecules 25(21), 4933 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. Karikalan, M. Chandrasekran, S. Ramasubramanian, S. Baskar, Hybridization of composites using natural and synthetic fibers for automotive application. Int. J. Sci. Res. Sci. Technol. 7, 916–920 (2017)

    Google Scholar 

  19. M.R. Sanjay, G.R. Arpitha, B. Yogesha, Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review. Mater. Today: Proc. 2(4–5), 2959–2967 (2015)

    CAS  Google Scholar 

  20. A. González, G. Gastelú, G.N. Barrera, P.D. Ribotta, C.I.Á. Igarzabal, Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 89, 758–764 (2019)

    Article  Google Scholar 

  21. M.A. Abdullah, M.S. Nazir, M.R. Raza, B.A. Wahjoedi, A.W. Yussof, Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J. Clean. Prod. 126, 686–697 (2016)

    Article  CAS  Google Scholar 

  22. C.M. Galanakis, Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91(4), 575–579 (2013)

    Article  CAS  Google Scholar 

  23. M. Harsh, P.C. Tyagi, K.S. Dadhwal, High-yielding provenances of bhimal (Grewia optiva) for fodder and fuelwood production in north-western Himalayas. Indian J. Agric. Sci. 81(8), 717–722 (2011)

    Google Scholar 

  24. R.R. Kumar, J. Chauhan, U. Joshi, Social Economical and Medicinal Importance of Grewia optiva. Agri Food 3(2), 252–254 (2021)

    Google Scholar 

  25. A. Mukherjee, T. Mondal, J.K. Bisht, A. Pattanayak, Farmers’ preference of fodder trees in mid hills of Uttarakhand: a comprehensive ranking using analytical hierarchy process. Range Manag. Agrofor. 39(1), 115–120 (2018)

    Google Scholar 

  26. R. Katoch, S.K. Singh, A. Tripath, N. Kumar, Effect of seasonal variation in biochemical composition of leaves of fodder trees prevalent in the mid-hill region of Himachal Pradesh. Range Manag. Agrofor. 38, 234–240 (2017)

    Google Scholar 

  27. C. Singh, R. Singh, Grewia optiva (Drumm. Ex Burr)-a multi-purpose tree under agroforestry in sub-tropical region of western Himalaya. J. Tree Sci. 37(2), 36–43 (2019)

    Google Scholar 

  28. W. Ullah, G. Uddin, B.S. Siddiqui, Ethnic uses, pharmacological and phytochemical profile of genus Grewia. J. Asian Nat. Prod. Res. 14, 186–195 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. W. Ul Bari, M. Zahoor, A. Zeb, M.U.K. Sahibzada, R. Ullah, A.A Shahat, I. Khan et al. Isolation, pharmacological evaluation and molecular docking studies of bioactive compounds from Grewia optiva. Drug Des., Dev. Ther. 3029–3036 (2019)

    Google Scholar 

  30. M. Qamar, S. Akhtar, T. Ismail, M. Wahid, R.T. Barnard, T. Esatbeyoglu, Z.M. Ziora, The chemical composition and health-promoting effects of the Grewia species—a systematic review and meta-analysis. Nutrients 13(12), 4565 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.K. Sharma, S.S. Sharma, Heritability and association analysis in Grewia optiva. Indian Forester 121(4), 318–320 (1995)

    Google Scholar 

  32. S.S. Bhat, H.P. Sankhyan, N.B. Singh, Estimation of genetic variability, heritability, genetic gain and correlation studies on seed and seedling traits in Grewia Optiva Drummond. Range Manag. Agrofor. 39(1), 43–51 (2018)

    Google Scholar 

  33. B.M. Carney Almroth, L. Åström, S. Roslund, H. Petersson, M. Johansson, N.K. Persson, Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 25, 1191–1199 (2018)

    Article  CAS  Google Scholar 

  34. M.T. Paridah, A.B. Basher, S. SaifulAzry, Z. Ahmed, Retting process of some bast plant fibers and its effect on fiber quality: a review. BioResources 6(4), 5260–5281 (2011)

    Article  Google Scholar 

  35. V. Antonov, J. Marek, M. Bjelkova, P. Smirous, H. Fischer, Easily available enzymes as natural retting agents. Biotechnol. J.: Healthc. Nutr. Technol. 2(3), 342–346 (2007)

    Article  CAS  Google Scholar 

  36. P. Manimaran, P. Senthamaraikannan, K. Murugananthan, M.R. Sanjay, Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J. Nat. Fibers. 15(1), 29–38 (2018)

    Article  CAS  Google Scholar 

  37. A. Karakoti, J.R. Aseer, P.K. Dasan, M. Rajesh, Micro cellulose grewia optiva fiber-reinforced polymer composites: relationship between structural and mechanical properties. J. Nat. Fibers 19(6), 2140–2151 (2022)

    Article  CAS  Google Scholar 

  38. J.R. Aseer, M.R. Bahubalendruni, A. Karakoti, K.B. Nb, Cellulosic microfiber extraction from ecofriendly Bahunia racemosa and its characterization. J. Nat. Fibers 19(16), 14477–14489 (2022)

    Article  CAS  Google Scholar 

  39. M. Boonterm, S. Sunyadeth, S. Dedpakdee, P. Athichalinthorn, S. Patcharaphun, R. Mungkung, R. Techapiesancharoenkij, Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. J. Clean. Prod. 134, 592–599 (2016)

    Article  CAS  Google Scholar 

  40. B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, M. Kottaisamy, Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores. Technol. 102(2), 1988–1997 (2011)

    Article  CAS  Google Scholar 

  41. A.S. Singha, A.K. Rana, R.K. Jarial, Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater. Des. 51, 924–934 (2013)

    Article  CAS  Google Scholar 

  42. M. Waikambo, Review of the history, properties and application of plant fibres. African J. of Sci. Technol. (AJST), Sci. and Eng. Ser. 7(2), 120–133 (2006)

    Google Scholar 

  43. A. Komuraiah, N.S. Kumar, B.D. Prasad, Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 50, 359–376 (2014)

    Article  CAS  Google Scholar 

  44. K.K. Murasing, M. Kumar, A. Kumar, Effect of altitude on the mechanical strength of Grewia optiva fiber in Garhwal Himalaya, India. J. Nat. Fibers 19(13), 6638–6647 (2022)

    Article  CAS  Google Scholar 

  45. A.S. Singha, V.K. Thakur, Green Polymer Materials (Studium Press, LLC USA, 2012) ISBN:1933699892

    Google Scholar 

  46. A.S. Singha, A.K. Rana, Effect of Aminopropyltriethoxysilane (APS) treatment on properties of mercerized lignocellulosic grewia optiva fiber. J. Polym. Environ. 21, 141–150 (2013)

    Article  CAS  Google Scholar 

  47. K.P. Panthi, A. Gyawali, S. Pandeya, M.L. Sharma Bhusal, B.B. Neupane, A.P. Tiwari, M.K. Joshi, The encapsulation of bioactive plant extracts into the cellulose microfiber isolated from G. optiva species for biomedical applications. Membranes 12(11), 1089 (2022)

    Google Scholar 

  48. A.S. Singha, A.K. Rana, Effect of graft copolymerization on mechanical, thermal, and chemical properties of grewia optiva/unsaturated polyester biocomposites. Polym. Compos. 33, 1403–1414 (2012). https://doi.org/10.1002/pc.22267

    Article  CAS  Google Scholar 

  49. A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fibre composites. J. Appl. Polym. Sci. 59, 1329 (1996)

    Article  CAS  Google Scholar 

  50. V.K. Thakur, M.K. Thakur, R.K. Gupta, Graft copolymers of natural fibre for green composites. Carbohydr. Polym. 104, 87–93 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. A.S. Singha, A.K. Rana, Effect of surface modification of Grewia Optiva fibres on their physico-mechanical and thermal properties. Bull. Mater. Sci. 35, 7 (2012)

    Article  Google Scholar 

  52. K.M. Nair, S. Thomas, G. Groeninckx, Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos. Sci. Technol. 61(16), 2519–2529 (2001)

    Article  Google Scholar 

  53. P.A. Sreekumar, S.P. Thomas, J. Marc Saiter, K. Joseph, G. Unnikrishnan, S. Thomas, Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A: Appl. Sci. Manuf. 40(11), 1777–1784 (2009)

    Google Scholar 

  54. L. Xue, G.T. Lope, P. Satyanarayan, Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. Polym. Environ. 15(1), 25–33 (2007)

    Article  Google Scholar 

  55. A.S. Singha, B.P. Thakur, D. Pathania, Analysis and characterization of microwave irradiation–induced graft copolymerization of methyl methacrylate onto delignified Grewia optiva fiber. Int. J. Polym. Anal. Charact. 19(2), 115–123 (2014)

    Article  CAS  Google Scholar 

  56. V.K. Gupta, D. Pathania, B. Priya, A.S. Singha, G. Sharma, Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal. Front. Chem. 2, 59 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  57. V.K. Thakur, A.S. Singha, M.K. Thakur, Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J. Polym. Environ. 20, 164–174 (2012)

    Article  CAS  Google Scholar 

  58. A.S. Singha, B. Priya, D. Pathania, Cornstarch/poly (vinyl alcohol) biocomposite blend films: Mechanical properties, thermal behavior, fire retardancy, and antibacterial activity. Int. J. Polym. Anal. Charact. 20(4), 357–366 (2015)

    Article  CAS  Google Scholar 

  59. A.K. Rana, A.S. Singha, Studies on the performance of polyester composites reinforced with functionalized grewia optiva short fibers. Adv. Polym. Technol. 33(4) (2014)

    Google Scholar 

  60. A.K. Bledzki, S. Reinhmane, J. Gassan, Thermoplastics reinforced with wood fillers. Polym. Plast. Technol. Eng. 37, 451–468 (1998)

    Article  CAS  Google Scholar 

  61. E. Braun, B.C. Levin, Polyesters: a review of the literature on products of combustion and toxicity. Fire Mater. 10(3–4), 107–123 (1986)

    Article  CAS  Google Scholar 

  62. R. Sinha, Outlines of Polymer Technology (Prentice-Hall by India private Limited, New Delhi–10001, 2000)

    Google Scholar 

  63. A.K. Rana, R. Sharma, A.S. Singha, Synthesis and evaluation of physicochemical properties of grewia optiva fiber graft copolymers. Polym. Sci. Ser. B 61, 409–420 (2019)

    Article  CAS  Google Scholar 

  64. A.S. Singha, V.K. Thakur, Renewable resource-based green polymer composites: analysis and characterization. Int. J. Polym. Anal. Charact. 15(3), 127–146 (2010)

    Google Scholar 

  65. V.K. Thakur, A.S. Singha, Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites. Bull. Mater. Sci. 33(3), 257–264 (2010)

    Article  CAS  Google Scholar 

  66. V.K. Thakur, M.K. Thakur, R.K. Gupta, Raw natural fiber–based polymer composites. Int. J. Polym. Anal. Charact. 19(3), 256–271 (2014)

    Article  CAS  Google Scholar 

  67. V.K. Thakur, A.S. Singha, Evaluation of grewia optiva fibers as reinforcement in polymer biocomposites. Polym. Plast. Technol. Eng. 49, 1101–1107 (2010). https://doi.org/10.1080/03602559.2010.496390

    Article  CAS  Google Scholar 

  68. A.S. Singha, V.K. Thakur, Synthesis and characterization of Grewia Optiva Fiberreinforced PF-based composites. Int. J. Polym. Mater. 57, 1059–1074 (2008). https://doi.org/10.1080/009140308022578000

    Article  CAS  Google Scholar 

  69. V.K. Thakur, A.S. Singha, M.K. Thakur, Green composites from natural fibers: mechanical and chemical aging properties. Int. J. Polym. Anal. Charact. 17(6), 401–407 (2012)

    Article  CAS  Google Scholar 

  70. A.S. Singha, V.K. Thakur, Synthesis and characterization of short Grewia optiva fiber-based polymer composites. Polym. Compos. 31(3), 459–470 (2010)

    Article  CAS  Google Scholar 

  71. U.K. Komal, D. Badhan, N.V.R.N. Satish, P.S. Mitra, I. Singh, Development and characterization of natural fiber reinforced composites. Int. J. Manuf. Sci. Eng. 8, 67–69 (2017)

    Google Scholar 

  72. S. Ali, P.K. Bajpai, I. Singh, A.K. Sharma, Curing of natural fibre-reinforced thermoplastic composites using microwave energy. J. Reinf. Plast. Compos. 33(11), 993–999 (2014)

    Article  CAS  Google Scholar 

  73. P.K. Bajpai, I. Singh, J. Madaan, Joining of natural fiber reinforced composites using microwave energy: experimental and finite element study. Mater. Des. 35, 596–602 (2012)

    Article  CAS  Google Scholar 

  74. J.M. Khare, S. Dahiya, B. Gangil, L. Ranakoti, S. Sharma, M.R.M. Huzaifah, C. Li, Comparative analysis of erosive wear behaviour of epoxy, polyester and vinyl esters based thermosetting polymer composites for human prosthetic applications using taguchi design. Polymers 13(20), 3607 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A.K. Bledzki, J. Gassan, Natural fiber reinforced plastics, in edited by N.P. Cheremisinoff, Handbook of Engineering Polymeric Materials (Marcel Dekker, Inc., New York, 1997)

    Google Scholar 

  76. A.K. Mohanty, M.A. Khan, G. Hinrichsen, Compos. Sci. Technol. 60, 1115 (2000)

    Article  CAS  Google Scholar 

  77. M.S. Sreekala, S. Thomas, Compos. Sci. Technol. 6, 861 (2003)

    Article  Google Scholar 

  78. A. Bessadok, S. Marais, F. Gouanve, L. Colasse, I. Zimmerlin, S. Roudesli, M. Matayer Compos. Sci. Technol. 67 685 (2007)

    Google Scholar 

  79. A.S. Singha, V.K. Thakur, Grewia optiva fiber reinforced novel, low cost polymer composites. E-J. Chem. 6(1), 71–76 (2009)

    Article  CAS  Google Scholar 

  80. S.Q.S. Ge Wang, J. Wang, S. Cao, H. Cheng, Micro tension test method for measuring tensile properties of individual cellulosic fibers. Wood Fiber Sci. 43(3), 1–11 (2011) Soc. of Wood Sci. and Technol. ISSN 2073-4360

    Google Scholar 

  81. C. Karine, J.J. Paul, G. Moussa, B. Christeple, B. Laurent, B. Joel, Morphology and mechanical behavior of a natural composite. The flax fiber, in Proceedings of 16th International Conference on Composite Materials (Ckyoto, Japan, 2007)

    Google Scholar 

  82. L.L. da Costa, R.L. Loila, S.N. Monterio, Diameter dependency of the tensile strength by weibull analysis. Part I. Revista Materia 15(5), 110–116 (2010) ISSN 517-7076

    Google Scholar 

  83. A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi, Mechanical properties of banana fibers. J. of Material Sci. 18, 2290–2296 (1983)

    Article  Google Scholar 

  84. I.M. De Rosa1, J.M. Kenny, D. Puglia, C. Santulli, F. Sarasini, Tensile behavior of New Zealand flax (Phormium tenax) fibers. J Reinforced Plast. Compos. 29(23), 3450–3454

    Google Scholar 

  85. Y. khatibi, A. Lawcock, and Y-W Mai, Fibre/matrix adhesion and residual strength of nitched composite laminates. ECCM 8, 3–6 (1998)

    Google Scholar 

  86. P.K. Bajpai, I. Singh, J. Madaan, Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J. Reinf. Plast. Compos. 31(24), 1712–1724 (2012)

    Article  CAS  Google Scholar 

  87. K. Oksman, M. Skrifvars, J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63(9), 1317–1324 (2003)

    Article  CAS  Google Scholar 

  88. J.T. Lee, M.W. Kim, Y.S. Song, T.J. Kang, J.R. Youn, Mechanical properties of denim fabric reinforced poly (lactic acid). Fibers Polym. 11, 60–66 (2010)

    Article  CAS  Google Scholar 

  89. K.M. Gupta, K. Kalauni, Fabrication and characterization of biocomposite using grewia optiva fibre (ie Bhimal) reinforced polyvinyl alcohol (PVA). Adv. Mater. Res. 1105, 51–55 (2015)

    Article  Google Scholar 

  90. I. Singh, P.K. Bajpai, D. Malik, J. Madaan, N. Bhatnagar, Microwave joining of natural fiber reinforced green composites. In Advanced Materials Research, vol. 410. (Trans Tech Publications Ltd, 2012), pp. 102–105

    Google Scholar 

  91. S. Kumar, B. Gangil, V.K. Patel, Physico-mechanical and tribological properties of Grewia Optiva fiber/bio-particulates hybrid polymer composites, in AIP Conference Proceedings, vol. 1728, No. 1,. AIP Publishing LLC, 2016), p. 020384

    Google Scholar 

  92. B.F. Yousif, N.S.M. El-Tayeb, Tribological evaluations of polyester composites considering three orientations of CSM glass fibres using BOR machine. Appl. Compos. Mater. 14, 105–116 (2007)

    Article  CAS  Google Scholar 

  93. U. Nirmal, B.F. Yousif, D. Rilling et al., Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 268, 1354–1370 (2010)

    Article  CAS  Google Scholar 

  94. N.S.M. El-Tayeb, B.F. Yousif, T.C. Yap, Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface. Wear 261, 443–452 (2006)

    Article  CAS  Google Scholar 

  95. P.K. Bajpai, I. Singh, J. Madaan, Frictional and adhesive wear performance of natural fibre reinforced polypropylene composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227, 385–392 (2013)

    Google Scholar 

  96. S.K. Verma, A. Gupta, T. Singh, B. Gangil, E. Jánosi, G. Fekete, Influence of dolomite on mechanical, physical and erosive wear properties of natural-synthetic fiber reinforced epoxy composites. Mater. Res. Express 6(12), 125704 (2019)

    Article  CAS  Google Scholar 

  97. P.K. Bajpai, I. Singh, J. Madaan, Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2), 829–840 (2013)

    Article  CAS  Google Scholar 

  98. S. Kumar, V.K. Patel, K.K.S. Mer, B. Gangil, T. Singh, G. Fekete, Himalayan natural fiber-reinforced epoxy composites: effect of Grewia optiva/Bauhinia Vahlii fibers on physico-mechanical and dry sliding wear behavior. J. Nat. Fibers 18(2), 192–202 (2021)

    Article  Google Scholar 

Download references

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, S., Gope, P.C. (2024). Grewia Optiva Natural Fiber Reinforced Composites. In: Verma, A., Gupta, H.S., Sethi, S.K. (eds) Hybrid Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2104-7_13

Download citation

Publish with us

Policies and ethics