Skip to main content

Conditions for Appearance of Internal Intergranular Cracking Type Fracture Under Creep-Fatigue

  • Chapter
  • First Online:
Creep-Fatigue Fracture: Analysis of Internal Damage

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 344))

  • 34 Accesses

Abstract

This Chapter presents analytical results based on the experimental results and observations of cracks in creep-fatigue tests of a stainless steel SUS304. Two fracture morphologies were observed in high-temperature creep-fatigue fracture: inner cracking type fracture due to coalescence of small internal intergranular cracks and surface cracking type due to growth of small surface intergranular cracks. The fracture morphologies are strongly dependent on loading conditions. The inner cracking type fracture occurs at low tensile strain rate and high compressive strain rate, as well as at high temperatures, on the other hand, the surface cracking type fracture occurs under the opposite conditions. Three-dimensional fracture mechanism maps were created for tensile strain rate, compressive strain rate, and temperature to visualize the relationship between loading conditions and fracture morphologies. For the same strain range at high temperatures, the fatigue life at fatigue cracking type fracture is the longest, followed by the fatigue life at surface intergranular cracking type fracture and the fatigue life at internal intergranular cracking type fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals (Macmillan, 1965)

    Google Scholar 

  2. S. Taira, R. Ohtani, High-temperature Strength of Materials (Ohmsha, 1980) (in Japanese).

    Google Scholar 

  3. R. Ohtani, K. Komai, Kankyou kouon kyoudogaku. Sougou zairyou kyoudogaku kouza, Ohmsha 7, 177–346 (1984). ((in Japanese))

    Google Scholar 

  4. M. E. Evans, Mechanism of Creep Fracture (Elsevier Applied Science Publishers, 1984), pp. 15–25

    Google Scholar 

  5. S. Usami, Y. Fukuda, S. Shida, Micro-crack initiation and propagation in 304 stainless steel plain specimen under fatigue-oxidation interaction at elevated temperature. J. Soc. Mat. Sci., Jpn. 33(369), 685–691 (1984) (in Japanese)

    Google Scholar 

  6. R. Ohtani, T. Kinami, H. Sakamoto, Small crack propagation in high temperature creep-fatigue of 304 stainless steel. Trans. Jpn. Soc. Mech. Eng. Ser. A 52(480), 1824–1830 (1986) (in Japanese)

    Google Scholar 

  7. M. Okazaki, T. Endoh, T. Yada, T. Koizumi, Surface small crack growth behavior of sus304 stainless steel in low cycle fatigue under creep-fatigue condition at elevated temperature. J. Soc. Mat. Sci., Jpn. 36(410), 1232–1238 (1987) (in Japanese)

    Google Scholar 

  8. R. Ohtani, T. Kitamura, H. Murayama, N. Tada, Simulation of initiation and early propagation of creep-fatigue small cracks based on the model of random fracture resistance of grain boundaries. Trans. Jpn. Soc Mech. Eng. Ser. A, 54(503), 1312–1310 (1988) (in Japanese)

    Google Scholar 

  9. R. Ohtani, T. Kitamura, N. Tada, Numerical simulation of initiation and early propagation of creep-fatigue small cracks based on a model of random fracture resistance of grain boundaries, structural design for elevated temperature environments, ASME PVP, vol. 163, ed. by C. Becht, R. Ohtani, L.K. Severud, S.Y. Zamrik (ASME, New York, 1989), pp. 123–127

    Google Scholar 

  10. N. Tada, T. Kitamura, R. Ohtani, Monte carlo simulation of creep-fatigue small cracks based on a three-dimensional model of random fracture resistance of grain boundaries. Trans. Jpn. Soc. Mech. Eng. Ser. A, 56(524), 708–714 (1990) (in Japanese)

    Google Scholar 

  11. R. Ohtani, T. Kitamura, N. Tada, Stochastic simulation of initiation and growth of small surface cracks in creep-fatigue condition, in Proceeding of 4th International Conference on Fatigue and Fatigue Thresholds (Fatigue 90), Vol. IV (Materials and Component Engineering Pub., Birmingham, 1990), pp. 2143–2148

    Google Scholar 

  12. T. Kitamura, N. Tada, M. Abe, M. Yumita, R. Ohtani, Effect of compression-going strain rate on initiation and growth of small cracks under creep-fatigue condition. Trans. Jpn. Soc. Mech. Eng. Sers. A, 56(523), 575–581 (1990) (in Japanese)

    Google Scholar 

  13. N. Tada, Creep Fatigue Microcrack Initiation and Propagation in 304 Stainless Steel. Kyoto University Doctoral Dissertation (1992) (in Japanese)

    Google Scholar 

  14. R. Ohtani, T. Kitamura, Creep-fatigue interaction under high-temperature conditions, in Handbook of Fatigue Crack Propagation in Metallic Structures, 2, ed. by C. Andrea, Elsevier, The Netherlands, pp. 1347–1383(1994).

    Google Scholar 

  15. K. Tokimasa, Research on High-temperature Creep Fatigue of Heat-resistant Steel (Kyoto University Doctoral Dissertation, 1991) (in Japanese)

    Google Scholar 

  16. H. Kawasaki, F. Ueno, K. Aoto, M. Ichimiya, Y. Wada, Evaluation of long term creep-fatigue life for type 304 stainless steel. J. Soc. Mat. Sci., Jpn. 41(471), 1773–1778 (1992) (in Japanese)

    Google Scholar 

  17. W. Zhou, R. Ohtani, T. Kitamura, N. Tada, A. Kosaka, Creep-fatigue intergranular fracture of inner cracking type in type 304 stainless steel. J. Soc. Mat. Sci., Jpn. 44(496), 78–83 (1995) (in Japanese)

    Google Scholar 

  18. T. Kitamura, R. Ohtani, N. Tada, W. Zhou, Characterization of creep-fatigue fracture of type 304 stainless steel based on initiation and growth of small cracks. Presented at the 1995 ASME/JSME Pressure Vessels and Piping Conference, “Mechanics and New Criteria for Life Assessment and Integrity Analysis” (Honolulu, Hawaii 1995)

    Google Scholar 

  19. R. Ohtani, N. Tada, T. Hashimoto, Difference between monotonic tension and creep-fatigue in the behavior of small crack initiation and early growth of 304 stainless steel at elevated temperature. J. Soc. Mat. Sci., Jpn. 38(432), 89–94 (1989) (in Japanese)

    Google Scholar 

  20. T. Kitamura, N. Tada, Y. Kuriyama, R. Ohtani, Distribution of grain-boundary length and inclination of type 304 stainless steel and its effects on small crack initiation and growth under creep-fatigue conditions. Trans. Jpn. Soc. Mech. Eng. Ser. A, 56(524), 702–707 (1990) (in Japanese)

    Google Scholar 

  21. T.-J. Chuang, K.I. Kagawa, J.R. Rice, L.B. Sills, Non-equilibrium models for diffusive cavitation of grain interfaces. Acta Metall. 27(3), 265–284 (1979)

    Article  CAS  Google Scholar 

  22. I.-W. Chen, A.S. Argon, Diffusive growth of grain-boundary cavities. Acta Metall. 29(10), 1759–1768 (1981)

    Article  CAS  Google Scholar 

  23. R. Horiuchi, M. Otsuka, Mechanisms of intergranular fracture at high temperatures. Bullet. Jpn. Inst. Met. 22(4), 293–301 (1983) (in Japanese)

    Google Scholar 

  24. N. Tada, R. Ohtani, T. Kitamura, M. Yamada, Inverse analysis on the distribution of internal small defects. Trans. Jpn Soc. Mech. Eng. Ser. A 59(558), 381–386 (1993) (in Japanese)

    Google Scholar 

  25. R. Ohtani, Questions and solutions on the method of remaining-life evaluation of structural in high-temperature power plants. Trans. Jpn. Soc. Mech. Eng. Ser. A, 59(565), 2019–2026 (1993) (in Japanese)

    Google Scholar 

  26. R. Ohtani, T. Kitamura, N. Tada, Cracking behavior of heat-resisting steels, alloys and a carbon-fibre-reinforced polymer at elevated temperatures. Mater. Sci. Eng.: A 143(1–2), 213–222 (1991)

    Google Scholar 

  27. Report of the High Temperature Creep-Fatigue Testing Committee of the Iron and Steel Institute of Japan, Investigation of high temperature low-cycle fatigue properties of 18Cr-8Ni steel by strain range division (The Iron and Steel Institute of Japan, 1981) (in Japanese).

    Google Scholar 

  28. F.C. Monkman and N.J. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASME 56, 593–620 (1956)

    Google Scholar 

  29. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress (Proceedings of Heat Transfer Symposium, University of Michigan, 1953), pp.976–988

    Google Scholar 

  30. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–949 (1954)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Tada, N., Sakamoto, J. (2024). Conditions for Appearance of Internal Intergranular Cracking Type Fracture Under Creep-Fatigue. In: Creep-Fatigue Fracture: Analysis of Internal Damage. Springer Series in Materials Science, vol 344. Springer, Singapore. https://doi.org/10.1007/978-981-97-1879-5_3

Download citation

Publish with us

Policies and ethics