Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 344))

  • 28 Accesses

Abstract

This chapter first presents the engineering and scientific background on high-temperature creep-fatigue. Secondly, research and problems regarding conventional high-temperature creep-fatigue are pointed out. Finally, the three objectives and significance of this book are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals (Macmillan, 1965)

    Google Scholar 

  2. S. Taira, R. Ohtani, High-Temperature Strength of Materials (Ohmsha, 1980) (in Japanese).

    Google Scholar 

  3. R. Ohtani, K. Komai, Kankyou kouon kyoudogaku. Sougou zairyou kyoudogaku kouza, Ohmsha 7, 177–346 (1984). ((in Japanese))

    Google Scholar 

  4. H.J. Frost, M.E. Ashby, Fundamental aspects of structural alloy design, ed. by R.I. Jaffe, B.A. Wilcox (Plenum Press, 1977), pp.27–35

    Google Scholar 

  5. R. Ohtani, Creep and fatigue at elevated temperature. Tetsu-to-Hagane 66, 2106–2118 (1980). ((in Japanese))

    Article  CAS  Google Scholar 

  6. R. Ohtani, Questions and solutions on the method of remaining-life evaluation of structural in high-temperature power plants. Trans. Jpn. Soc. Mech. Eng. Ser. A, 59(565), 2019–2026 (1993) (in Japanese)

    Google Scholar 

  7. T. Tan, M. Sukekawa, S. Sakurai, Y. Kawasaki, Preventive maintenance technology for turbine components. Hitachihyouron 72, 19–24 (1990). ((in Japanese))

    Google Scholar 

  8. M. Kitagawa, Assessment techniques of the degradation of high temperature plant materials. J. Jpn. Weld. Soc. 59, 190–198 (1990). ((in Japanese))

    Article  CAS  Google Scholar 

  9. H. Umaki, Remaining life diagnosis technology for power generation boilers. Piping Eng. 32, 76–86 (1990)

    Google Scholar 

  10. R. Tanaka, Research on ultra-high temperature materials. J. Jpn. Soc. Heat Treat. 30, 134–139 (1990). ((in Japanese))

    Google Scholar 

  11. K. Torikoshi, M. Kawazoe, Super-high temperature technology. Jpn. Soc. Mech. Eng. (1992) (in Japanese)

    Google Scholar 

  12. S.S. Manson, Behavior of materials under conditions of thermal stress (Proceedings of Heat Transfer Symposium, University of Michigan, 1953), pp.9–75

    Google Scholar 

  13. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931–949 (1954)

    CAS  Google Scholar 

  14. E.L. Robinson, Effect of temperature variation on the creep strength of steels. Trans. ASME 60, 253–259 (1938)

    Google Scholar 

  15. S. Taira, Lifetime of structures subjected to varying load and temperature, in “Creep in Structures”, IUTAM Colloquium, ed. by N.J. Hoff (Springer-Verlag, 1962), pp. 96–124

    Google Scholar 

  16. S. Taira, M. Ohnami, Fracture and deformation of metals subjected to thermal cycling combined with mechanical stress, in Joint International Conference on Creep, Institution of Mechanical Engineers (1963), pp. 3–57

    Google Scholar 

  17. L.F. Coffin, Jr., Predictive parameters and their application to high temperature low-cycle fatigue, in Proceedings of 2nd International Conference on Fracture (1969), pp. 643–653

    Google Scholar 

  18. S.S. Manson, G.R. Halford, M.H. Hirschbery, Creep-fatigue analysis by strain-range partitioning, NASA TMX 6783 (1971)

    Google Scholar 

  19. S.S. Manson, The challenge to unify treatment of high temperature fatigue- a partisan proposal based on strain-range partitioning, ASTMSTP 520. Am. Soc. Test. Mater. 744–754 (1973)

    Google Scholar 

  20. K. Tokimasa, Kyoto University Doctoral Dissertation (1991)

    Google Scholar 

  21. J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans. ASME, Series E 35, 379–386 (1968)

    Article  Google Scholar 

  22. J.D. Landes, J.A. Begley, A fracture mechanics to creep crack growth. ASTM STP 590, 128–148 (1976)

    CAS  Google Scholar 

  23. K. Ohji, K. Ogura, S. Kubo, Estimates of J-Integral in the general yielding range and its application to creep crack problems. Trans. Jpn. Soc. Mech. Eng. 44, 1831–1838 (1978). ((in Japanese))

    Article  Google Scholar 

  24. N.E. Dowling, Geometry effects and the J-Integral approach to elastic-plastic fatigue crack growth. ASTM STP 601, 19–32 (1977)

    Google Scholar 

  25. S. Taira, R. Ohtani, T. Kitamura, Application of J-Integral to high-temperature crack propagation, Part I-Creep crack propagation. Trans. ASME, J. Eng. Mater. Tech. 101, 154–161 (1979)

    Article  CAS  Google Scholar 

  26. S. Taira, R. Ohtani, T. Komatsu, Application of J-Integral to high-temperature crack propagation, Part IlI-fatigue crack propagation. Trans. ASME, J. Eng. Mater. Technol. 101, 162–167 (1979)

    Article  CAS  Google Scholar 

  27. R. Ohtani, K. Yamada, T. Kashiwagi, H. Matsubara, Crack propagation of 304 stainless steel in low cycle fatigue at elevated temperature. Trans. Jpn. Soc. Mech. Eng. Ser. A 48, 1378–1390 (1982). ((in Japanese))

    Article  Google Scholar 

  28. R. Ohtani, Characteristics of high-temperature strength from the point of view of the creep-fatigue crack propagation. Trans. Jpn. Soc. Mech. Eng. Ser. A 52, 1461–1468 (1980). ((in Japanese))

    Article  Google Scholar 

  29. T. Kitamura, R. Ohtani, Crack propagation under creep-fatigue interaction condition. Trans. Jpn. Soc. Mech. Eng. Ser. A 52, 1816–1823 (1986). ((in Japanese))

    Article  Google Scholar 

  30. T. Kitamura, Kyoto University Doctoral Dissertation (1986)

    Google Scholar 

  31. R. Ohtani, T. Kitamura, Creep-fatigue interaction under high-temperature conditions, in Handbook of Fatigue Crack Propagation in Metallic Structures, 2. ed. by C. Andrea (The Netherlands, Elsevier, 1994), pp.1347–1383

    Chapter  Google Scholar 

  32. L.M. Kachanov, On creep rupture time, Izv. Acad. Nauk. SSSR, Otd Techn. Nauk No. 8, 26–31 (1958)

    Google Scholar 

  33. J. Lemaitre, A. Plumtree, Application of damage concepts to predict creep-fatigue failures. Trans. ASME 101, 284–292 (1979)

    CAS  Google Scholar 

  34. S. Murakami, Recent topics in continuum damage mechanics. Trans. Jpn. Soc. Mech. Eng. Ser. A 51, 1651–1659 (1985). ((in Japanese))

    Article  Google Scholar 

  35. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge Univ. Press, 1990), pp. 346–356

    Google Scholar 

  36. B.J. Cane, J.A. Williams, Remaining life prediction of high temperature materials. Int. Mater. Rev. 32, 241–259 (1987)

    Article  CAS  Google Scholar 

  37. M.S. Shammas, Int. Conf. on Life Assess, and Exten, 238 (1988)

    Google Scholar 

  38. S. Murakami, Y. Liu, Y. Sugita, Interrelation between damage variables of continuum damage mechanics and metallographical parameters in creep damage. Int. J. of Damage Mech. 1, 172–190 (1992)

    Article  CAS  Google Scholar 

  39. Y. Kadoya, T. Goto, Creep damage evaluation based on damage mechanics of Cr-Mo-V steel forging. J. Soc. Mat. Sci., Jpn. 41(471), 1736–1742 (1992) (in Japanese)

    Google Scholar 

  40. M. E. Evans, Mechanism of Creep Fracture (Elsevier Applied Science Publishers, 1984), pp. 15–25

    Google Scholar 

  41. H. Kawasaki, F. Ueno, K. Aoto, M. Ichimiya, Y. Wada, Evaluation of long term creep-fatigue life for type 304 stainless steel. J. Soc. Mat. Sci., Jpn. 41(471), 1773–1778 (1992) (in Japanese)

    Google Scholar 

  42. S. Usami, Y. Fukuda, S. Shida, Micro-crack initiation and propagation in 304 stainless steel plain specimen under fatigue-oxidation interaction at elevated temperature. J. Soc. Mat. Sci., Japan, 33(471), 685–691 (1984) (in Japanese)

    Google Scholar 

  43. R. Ohtani, T. Kinami, H. Sakamoto, Small crack propagation in high temperature creep-fatigue of 304 stainless steel. Trans. Jpn. Soc. Mech. Eng. Ser. A 52(480), 1824–1830 (1986) (in Japanese)

    Google Scholar 

  44. M. Okazaki, T. Endoh, T. Yada, T. Koizumi, Surface small crack growth behavior of SUS304 stainless steel in low cycle fatigue under creep-fatigue condition at elevated temperature. J. Soc. Mat. Sci., Jpn. 36(410), 1232–1238 (1987) (in Japanese)

    Google Scholar 

  45. R. Ohtani, T. Kitamura, H. Murayama, N. Tada, Simulation of initiation and early propagation of creep-fatigue small cracks based on the model of random fracture resistance of grain boundaries. Trans. Jpn. Soc. Mech. Eng. Ser. A 54(503), 1312–1316 (1988) (in Japanese)

    Google Scholar 

  46. R. Ohtani, T. Kitamura, N. Tada, Numerical simulation of initiation and early propagation of creep-fatigue small cracks based on a model of random fracture resistance of grain boundaries, in Structural Design for Elevated Temperature Environments, ASME PVP, vol.163, ed. by C. Becht, R. Ohtani, L.K, Severud, S.Y. Zamrik (ASME, New York, 1989), pp. 123–127

    Google Scholar 

  47. N. Tada, T. Kitamura, R. Ohtani, Monte carlo simulation of creep-fatigue small cracks based on a three-dimensional model of random fracture resistance of grain boundaries. Trans. Jpn. Soc. Mech. Eng. Ser. A, 56(524), 708–714 (1990) (in Japanese)

    Google Scholar 

  48. R. Ohtani, T. Kitamura, N. Tada, Stochastic simulation of initiation and growth of small surface cracks in creep-fatigue condition, in Proceeding 4th International Conference on Fatigue and Fatigue Thresholds (Fatigue 90), vol. IV (Materials and Component Engineering Pub., Birmingham, 1990), pp. 2143–2148

    Google Scholar 

  49. T. Kitamura, N. Tada, M. Abe, M. Yumita, R. Ohtani, Effect of compression-going strain rate on initiation and growth of small cracks under creep-fatigue condition. Trans. Jpn. Soc. Mech. Eng. Ser. A 56(523), 575–581 (1990) (in Japanese)

    Google Scholar 

  50. N. Tada, Kyoto University Doctoral Dissertation (1992)

    Google Scholar 

  51. S. Taira, R. Ohtani, T. Yonekura, M. Osada, T. Kitamura, Time dependent fatigue crack propagation at elevated temperature. Trans. Jpn. Soc. Mech. Eng. Ser. A 46(408), 861–869 (1980) (in Japanese)

    Google Scholar 

  52. M. Okazaki, F. Shiraiwa, I. Hattori, T. Koizumi, Effect of strain wave shape on low-cycle fatigue crack propagation of type SUS 304 stainless steel at elevated temperatures. J. Soc. Mat. Sci., Jpn. 32(357), 645–650 (1983) (in Japanese)

    Google Scholar 

  53. K. Ohji, K. Ogura, S. Kubo, H. Saito, M. Fukumoto, Crack growth in SUS304 stainless steel under creep-fatigue interaction. J. Soc. Mat. Sci., Jpn. 33(365), 145–151 (1984) (in Japanese)

    Google Scholar 

  54. K. Kuwabara, A. Nitta, T. Kitamura, Crack propagation behavior and fracture modes of austenitic stainless and ferritic low-alloy steels in elevated temperature low cycle fatigue. J. Soc. Mat. Sci., Jpn. 33(366), 338–344 (1984) (in Japanese)

    Google Scholar 

  55. R. Ohtani, S. Nakayama, T. Taira, Applicability of creep J-Integral to microcrack propagation of creep in 304 stainless steel. J. Soc. Mat. Sci., Jpn. 33(368), 590–595 (1984) (in Japanese)

    Google Scholar 

  56. T. Kitamura, N. Tada, Y. Kuriyama, R. Ohtani, Distribution of grain-boundary length and inclination of type 304 stainless steel and its effects on small crack initiation and growth under creep-fatigue conditions. Trans. Jpn. Soc. Mech. Eng. Ser. A, 56(524), 702–707 (1990) (in Japanese)

    Google Scholar 

  57. T. Ogata, M. Arai, A. Nitta, Continuous observation of micro-damage evolution process by creep-fatigue testing machine combined with SEM. J. Soc. Mat. Sci., Jpn. 44(496), 52–58 (1995) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Tada, N., Sakamoto, J. (2024). Introduction. In: Creep-Fatigue Fracture: Analysis of Internal Damage. Springer Series in Materials Science, vol 344. Springer, Singapore. https://doi.org/10.1007/978-981-97-1879-5_1

Download citation

Publish with us

Policies and ethics