Skip to main content

Bioeconomy for Sustainable Biomaterials and Bioproduct Development

  • Chapter
  • First Online:
Bioeconomy for Sustainability

Abstract

The economy and health sector are robustly shattered by emerging infectious diseases across the globe. The modern-generation vaccines including viral vector vaccines, mRNA vaccines, DNA vaccines, synthetic vaccines, viruslike particles, and plant-based vaccines are being used against these infectious diseases. However, in recent years, biomass has gained critical attention as a sustainable and natural resource for the fabrication of vaccines due to the benefits of availability, low cost, renewability, and environmentally nonthreatening attributes. Hence, cost-effective plant-based vaccines (PBV) could be the potential solution to withstand the current health economic crisis. Moreover, despite vaccination campaigns, the recurrence of pandemic waves has emphasized the necessity of innovation/utilization of immune boosters in order to acquire adequate long-term vaccine protection. Plant-derived immuno-adjuvants to vaccines can prevent infections by enhancing the immune system. To date, plant metabolites such as polysaccharides, glycoproteins, and glycosides have been utilized in experimental vaccines as attractive adjuvants and exhibited to be very safe and immunogenic. It is considered that plant-derived adjuvants to vaccines are economical, safe, as well as dose-sparing with long-lasting immunity and acceptable safety. In this chapter, suitability and development strategies for sustainable plant-derived vaccines and immune adjuvants will be discussed to enhance the bioeconomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CoVLP+AS03:

COVID-19 viruslike particle vaccine with AS03 adjuvant

HAI-05 vaccine:

Hemagglutination inhibition assay-05 vaccine

HIV:

Human immunodeficiency virus

NCT:

National Clinical Trial

PDVAs:

Plant-derived vaccine antigens

Pfs25:

Plasmodium falciparum surface protein 25

QVLP:

Quadrivalent viruslike particle

Salmonella typhi:

Bacterium causing typhoid fever

VLP:

Viruslike particle

References

  • Abdelkader HS, Abdel-Salam AM, El Saghir SM, Hussein MH (2004) Molecular cloning and expression of recombinant coat protein gene of banana bunchy top virus in E. coli and its use in the production of diagnostic antibodies. Arab J Biotechnol 7:173–187

    Google Scholar 

  • Abolnik C, Smith T, Wandrag DBR, Murphy MA, Rautenbach M, Olibile O, O'Kennedy M (2022) Dose immunogenicity study of a plant-produced influenza virus-like particle vaccine in layer hens. Heliyon 8(6):e09804. https://doi.org/10.1016/j.heliyon.2022.e09804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L (2021) Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 49(2):953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar A, Twardowski T, Wohlgemuth R (2019) Bioeconomy for sustainable development. Biotechnol J 14(8):e1800638. https://doi.org/10.1002/biot.201800638

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23(1):47–56

    Article  Google Scholar 

  • Ammar ED, Gomez-Luengo R, Gordon D, Hogenhout S (2005) Characterization of maize Iranian mosaic virus and comparison with Hawaiian and other isolates of maize mosaic virus (Rhabdoviridae). J Phytopathol 153(3):129–136

    Article  Google Scholar 

  • Antar M, Lyu D, Nazari M, Shah A, Zhou X, Smith DL (2021) Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew Sustain Energy Rev 139:110691

    Article  CAS  Google Scholar 

  • Arakawa T, Chong DK, Langridge WH (1998) Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol 16(3):292–297. https://doi.org/10.1038/nbt0398-292

    Article  CAS  PubMed  Google Scholar 

  • Askora AAM (2014) The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. Citri, the causative agent of citrus canker disease. Front Microbiol 5:92787

    Google Scholar 

  • Belanger H, Fleysh N, Cox S, Hartman G, Deka D, Trudel M, Koprowski H, Yusibov V (2000) Human respiratory syncytial virus vaccine antigen produced in plants. FASEB J 14(14):2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Bolhassani A, Khavari A, Orafa Z (2014) Electroporation-advantages and drawbacks for delivery of drug, gene and vaccine. In: Application of nanotechnology in drug delivery, pp 369–397

    Google Scholar 

  • Bonifacio BV, da Silva PB, Dos Ramos MAS, Negri KMS, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed 9:1–15

    Google Scholar 

  • Cabauatan PQ, Hibino H (2018) Monoclonal antibodies for detection of rice viruses: grassy stunt, stripe, dwarf, gall dwarf, and ragged stunt. In: Biotechnology for biological control of pests and vectors, pp 119–132

    Chapter  Google Scholar 

  • Cavagnaro PF, Chung S-M, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Gen Genomics 281:273–288

    Article  CAS  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 9(1):26–49

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, André Lévesque C, Tisserat N, Buell CR (2008) Analysis of the Pythium ultimum transcriptome using sanger and pyrosequencing approaches. BMC Genomics 9:542. https://doi.org/10.1186/1471-2164-9-542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chichester JA, Jones RM, Green BJ, Stow M, Miao F, Moonsammy G, Streatfield SJ, Yusibov V (2012) Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 4(11):3227–3244. https://doi.org/10.3390/v4113227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JL, Waheed MT, Lössl AG, Martinussen I, Daniell H (2013) How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol Biol 83:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente M, Corigliano MG (2012) Overview of plant-made vaccine antigens against malaria. J Biomed Biotechnol 2012:206918. https://doi.org/10.1155/2012/206918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Concha C, Cañas R, Macuer J, Torres MJ, Herrada AA, Jamett F, Ibáñez C (2017) Disease prevention: an opportunity to expand edible plant-based vaccines? Vaccines (Basel) 5(2):5020014. https://doi.org/10.3390/vaccines5020014

    Article  CAS  Google Scholar 

  • Daikuara LY, Chen X, Yue Z, Skropeta D, Wood FM, Fear MW, Wallace GG (2022) 3D bioprinting constructs to facilitate skin regeneration. Adv Funct Mater 32(3):2105080

    Article  CAS  Google Scholar 

  • Davoodi-Semiromi A, Samson N, Daniell H (2009) The green vaccine: A global strategy to combat infectious and autoimmune diseases. Hum Vaccine 5(7):488–493. https://doi.org/10.4161/hv.8247

    Article  CAS  Google Scholar 

  • Dietrich K, Dumont M-J, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum 9:58–70

    Article  Google Scholar 

  • Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, Zhang W, Tan XL (2022) Plant disease resistance-related signaling pathways: recent progress and future prospects. Int J Mol Sci 23(24):6200. https://doi.org/10.3390/ijms232416200

    Article  CAS  Google Scholar 

  • Dorozhkin SV (2009) Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 44(9):2343–2387

    Article  CAS  Google Scholar 

  • Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger J (2013) Vaccine hesitancy: an overview. Hum Vaccin Immunother 9(8):1763–1773. https://doi.org/10.4161/hv.24657

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Dodds PN, Lawrence GJ (2007) The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr Opin Microbiol 10(4):326–331. https://doi.org/10.1016/j.mib.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Poplawsky AR, Nikolaeva OV, Myers JR, Karasev AV (2014) Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. Phytopathology 104(7):786–793

    Article  CAS  PubMed  Google Scholar 

  • Folimonova SY, Achor D, Bar-Joseph M (2020) Walking together: cross-protection, genome conservation, and the replication machinery of citrus tristeza virus. Viruses 12(12):1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis MJ (2018) Recent advances in vaccine technologies. Vet Clin N Am Small Anim Pract 48(2):231–241. https://doi.org/10.1016/j.cvsm.2017.10.002

    Article  Google Scholar 

  • Galanakis CM, Brunori G, Chiaramonti D, Matthews R, Panoutsou C, Fritsche UR (2022) Bioeconomy and green recovery in a post-COVID-19 era. Sci Total Environ 808:152180. https://doi.org/10.1016/j.scitotenv.2021.152180

    Article  CAS  PubMed  Google Scholar 

  • Gellért A, Salánki K, Tombácz K, Tuboly T, Balázs E (2012) A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines. PLoS One 7(12):e52688. https://doi.org/10.1371/journal.pone.0052688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grama SB, Liu Z, Li J (2022) Emerging trends in genetic engineering of microalgae for commercial applications. Mar Drugs 20(5):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gropp RE (2020) COVID-19 and the bioeconomy. Bioscience 70(6):443. https://doi.org/10.1093/biosci/biaa056

    Article  PubMed  Google Scholar 

  • Hager KJ, Pérez Marc G, Gobeil P, Diaz RS, Heizer G, Llapur C, Makarkov AI, Vasconcellos E, Pillet S, Riera F, Saxena P, Geller Wolff P, Bhutada K, Wallace G, Aazami H, Jones CE, Polack FP, Ferrara L, Atkins J, Boulay I, Dhaliwall J, Charland N, Couture MMJ, Jiang-Wright J, Landry N, Lapointe S, Lorin A, Mahmood A, Moulton LH, Pahmer E, Parent J, Séguin A, Tran L, Breuer T, Ceregido MA, Koutsoukos M, Roman F, Namba J, D'Aoust MA, Trepanier S, Kimura Y, Ward BJ (2022) Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N Engl J Med 386(22):2084–2096. https://doi.org/10.1056/NEJMoa2201300

    Article  CAS  PubMed  Google Scholar 

  • Hansen E (2016) Responding to the bioeconomy: business model innovation in the forest sector. In: Environmental impacts of traditional and innovative forest-based bioproducts, pp 227–248

    Chapter  Google Scholar 

  • Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew Sustain Energy Rev 101:590–599

    Article  CAS  Google Scholar 

  • Hioki K, Hayashi T, Natsume-Kitatani Y, Kobiyama K, Temizoz B, Negishi H, Kawakami H, Fuchino H, Kuroda E, Coban C, Kawahara N, Ishii KJ (2022) Machine learning-assisted screening of herbal medicine extracts as vaccine adjuvants. Front Immunol 13:847616. https://doi.org/10.3389/fimmu.2022.847616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgetts J, Karamura G, Johnson G, Hall J, Perkins K, Beed F, Nakato V, Grant M, Studholme DJ, Boonham N (2015) Development of a lateral flow device for in-field detection and evaluation of PCR-based diagnostic methods for Xanthomonas campestris pv. Musacearum, the causal agent of banana xanthomonas wilt. Plant Pathol 64(3):559–567

    Article  CAS  PubMed  Google Scholar 

  • Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O (2021) Unlocking nature’s biosynthetic power—metabolic engineering for the fermentative production of chemicals. Angew Chem Int Ed 60(5):2258–2278

    Article  CAS  Google Scholar 

  • Jain A, Sarsaiya S, Awasthi MK, Singh R, Rajput R, Mishra UC, Chen J, Shi J (2022) Bioenergy and bio-products from bio-waste and its associated modern circular economy: current research trends, challenges, and future outlooks. Fuel 307:121859

    Article  CAS  Google Scholar 

  • Jannat K, Paul AK, Bondhon TA, Hasan A, Nawaz M, Jahan R, Mahboob T, Nissapatorn V, Wilairatana P, Pereira ML, Rahmatullah M (2021) Nanotechnology applications of flavonoids for viral diseases. Pharmaceutics 13(11):11895. https://doi.org/10.3390/pharmaceutics13111895

    Article  CAS  Google Scholar 

  • Jenul C, Horswill AR (2019) Regulation of Staphylococcus aureus virulence. Microbiol Spectr 7(2):2018. https://doi.org/10.1128/microbiolspec.GPP3-0031-2018

    Article  Google Scholar 

  • Karran RA, Sanfaçon H (2014) Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Mol Plant Microbe Interact 27(9):933–943. https://doi.org/10.1094/mpmi-04-14-0099-r

    Article  CAS  PubMed  Google Scholar 

  • Kessans SA, Linhart MD, Meador LR, Kilbourne J, Hogue BG, Fromme P, Matoba N, Mor TS (2016) Immunological characterization of plant-based HIV-1 gag/Dgp41 virus-like particles. PLoS One 11(3):e0151842. https://doi.org/10.1371/journal.pone.0151842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kwon KW, Park J, Kang H, Lee Y, Sohn EJ, Hwang I, Eum SY, Shin SJ (2020) Plant-produced N-glycosylated Ag85A exhibits enhanced vaccine efficacy against mycobacterium tuberculosis HN878 through balanced multifunctional Th1 T cell immunity. Vaccines (Basel) 8(2):8020189. https://doi.org/10.3390/vaccines8020189

    Article  CAS  Google Scholar 

  • Kircher M (2021) Bioeconomy—present status and future needs of industrial value chains. New Biotechnol 60:96–104. https://doi.org/10.1016/j.nbt.2020.09.005

    Article  CAS  Google Scholar 

  • Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33(6 Pt 2):1024–1042. https://doi.org/10.1016/j.biotechadv.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa N, Lavoie PO, D'Aoust MA, Couture MM, Dargis M, Trépanier S, Hoshino S, Koike T, Arai M, Tsutsui N (2021a) Development and characterization of a plant-derived rotavirus-like particle vaccine. Vaccine 39(35):4979–4987. https://doi.org/10.1016/j.vaccine.2021.07.039

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa N, Robinson MK, Bernard C, Kawaguchi Y, Koujin Y, Koen A, Madhi S, Polasek TM, McNeal M, Dargis M, Couture MM, Trépanier S, Forrest BD, Tsutsui N (2021b) Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine 39(39):5513–5523. https://doi.org/10.1016/j.vaccine.2021.08.052

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan M, Yoshizumi T, Sudesh K, Kodama Y, Numata K (2015) Double-stranded DNA introduction into intact plants using peptide–DNA complexes. Plant Biotechnol 32(1):39–45

    Article  CAS  Google Scholar 

  • Lam P, Steinmetz NF (2018) Plant viral and bacteriophage delivery of nucleic acid therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(1):e1487

    Article  Google Scholar 

  • Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12):e15559. https://doi.org/10.1371/journal.pone.0015559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannou C (2012) Variation and selection of quantitative traits in plant pathogens. Annu Rev Phytopathol 50:319–338

    Article  CAS  PubMed  Google Scholar 

  • Maharjan PM, Choe S (2021) Plant-based COVID-19 vaccines: current status, design, and development strategies of candidate vaccines. Vaccines (Basel) 9(9):9090992. https://doi.org/10.3390/vaccines9090992

    Article  CAS  Google Scholar 

  • Malabadi RB, Ganguly A, Silva JA, Parashar A, Suresh MR, Sunwoo H (2011) Overview of plant-derived vaccine antigens: dengue virus. J Pharm Pharm Sci 14(3):400–413. https://doi.org/10.18433/j3401k

    Article  CAS  PubMed  Google Scholar 

  • Mardanova ES, Takova KH, Toneva VT, Zahmanova GG, Tsybalova LM, Ravin NV (2020) A plant-based transient expression system for the rapid production of highly immunogenic hepatitis E virus-like particles. Biotechnol Lett 42(11):2441–2446. https://doi.org/10.1007/s10529-020-02995-x

    Article  CAS  PubMed  Google Scholar 

  • Masler EP (2006) Changes in FaRP-like peptide levels during development of eggs from the plant-parasitic cyst nematode, Heterodera glycines. J Helminthol 80(1):53–58. https://doi.org/10.1079/joh2005322

    Article  CAS  PubMed  Google Scholar 

  • Menzel S, Holland T, Boes A, Spiegel H, Fischer R, Buyel JF (2018) Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr Purif 152:122–130

    Article  CAS  PubMed  Google Scholar 

  • Milán-Noris EM, Monreal-Escalante E, Rosales-Mendoza S, Soria-Guerra RE, Radwan O, Juvik JA, Korban SS (2020) An AMA1/MSP1(19) adjuvanted malaria transplastomic plant-based vaccine induces immune responses in test animals. Mol Biotechnol 62(10):534–545. https://doi.org/10.1007/s12033-020-00271-x

    Article  CAS  PubMed  Google Scholar 

  • Myint KM, Arikit S, Wanchana S, Yoshihashi T, Choowongkomon K, Vanavichit A (2012) A PCR-based marker for a locus conferring the aroma in Myanmar rice (Oryza sativa L.). Theor Appl Genet 125:887–896

    Article  CAS  PubMed  Google Scholar 

  • Najdabbasi N, Mirmajlessi SM, Dewitte K, Ameye M, Mänd M, Audenaert K, Landschoot S, Haesaert G (2021) Green leaf volatile confers management of late blight disease: a green vaccination in potato. J Fungi (Basel) 7(4):312. https://doi.org/10.3390/jof7040312

    Article  CAS  PubMed  Google Scholar 

  • Niazian M, Noori SAS, Galuszka P, Mortazavian SMM (2017) Tissue culture-based agrobacterium-mediated and in planta transformation methods. Czech J Genet Plant Breed 53(4):133–143

    Article  CAS  Google Scholar 

  • Nick P (2012) Extend the power of cellular models. Protoplasma 249(1):1–2

    Article  PubMed  Google Scholar 

  • Ogrina A, Skrastina D, Balke I, Kalnciema I, Jansons J, Bachmann MF, Zeltins A (2022) Comparison of bacterial expression systems based on potato virus Y-like particles for vaccine generation. Vaccines (Basel) 10(4):485. https://doi.org/10.3390/vaccines10040485

    Article  CAS  PubMed  Google Scholar 

  • Padua GW, Wang Q (2012) Nanotechnology research methods for food and bioproducts. Wiley

    Book  Google Scholar 

  • Pascoli DU, Aui A, Frank J, Therasme O, Dixon K, Gustafson R, Kelly B, Volk TA, Wright MM (2022) The US bioeconomy at the intersection of technology, policy, and education. Biofuels Bioprod Biorefin 16(1):9–26

    Article  CAS  Google Scholar 

  • Piyasirisilp S, Hemachudha T (2002) Neurological adverse events associated with vaccination. Curr Opin Neurol 15(3):333–338. https://doi.org/10.1097/00019052-200206000-00018

    Article  PubMed  Google Scholar 

  • Ramjee L, Lemay W, Vurgun N, Charland N, Bauch CT, Pullagura GR, Houle SKD, Tremblay G (2021) Projected impact of a plant-derived vaccine on the burden of seasonal influenza in Canada. Hum Vaccin Immunother 17(10):3643–3651. https://doi.org/10.1080/21645515.2021.1908797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD, Brown JK (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18(9):2402–2414. https://doi.org/10.1105/tpc.106.043307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba K, Gottschamel J, Younus I, Syed T, Gull K, Lössl AG, Mirza B, Waheed MT (2019) Chloroplast-based inducible expression of ESAT-6 antigen for development of a plant-based vaccine against tuberculosis. J Biotechnol 305:1–10. https://doi.org/10.1016/j.jbiotec.2019.08.016

    Article  CAS  PubMed  Google Scholar 

  • Santos Pereira R, Vasconcelos Costa V, Luiz Menezes GG, Rodrigues Valadares CP, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F (2022) Anti-Zika virus activity of plant extracts containing polyphenols and triterpenes on Vero CCL-81 and human neuroblastoma SH-SY5Y cells. Chem Biodivers 19(4):e202100842. https://doi.org/10.1002/cbdv.202100842

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Hernández A, Esteban E, Garrido P (2019) Transition to a bioeconomy: perspectives from social sciences. J Clean Prod 224:107–119

    Article  Google Scholar 

  • Saxena J, Rawat S (2013) Edible vaccines. In: Advances in biotechnology, pp 207–226. https://doi.org/10.1007/978-81-322-1554-7_12

    Chapter  Google Scholar 

  • Scavetta RD, Herron SR, Hotchkiss AT, Kita N, Keen NT, Benen JA, Kester HC, Visser J, Jurnak F (1999) Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11(6):1081–1092. https://doi.org/10.1105/tpc.11.6.1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzlein A (2001) Non-viral vectors in cancer gene therapy: principles and progress. Anti-Cancer Drugs 12(4):275–304

    Article  CAS  PubMed  Google Scholar 

  • Schiavinato M, Marcet-Houben M, Dohm JC, Gabaldón T, Himmelbauer H (2020) Parental origin of the allotetraploid tobacco Nicotiana benthamiana. Plant J 102(3):541–554. https://doi.org/10.1111/tpj.14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütte G (2018) What kind of innovation policy does the bioeconomy need? New Biotechnol 40:82–86

    Article  Google Scholar 

  • Shanmugaraj B, Khorattanakulchai N, Panapitakkul C, Malla A, Im-Erbsin R, Inthawong M, Sunyakumthorn P, Hunsawong T, Klungthong C, Reed MC (2022) Preclinical evaluation of a plant-derived SARS-CoV-2 subunit vaccine: protective efficacy, immunogenicity, safety, and toxicity. Vaccine 40(32):4440–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard JF, Secor GA, Purcifull D (1974) Immunochemical cross-reactivity between the dissociated capsid proteins of PVY group plant viruses. Virology 58(2):464–475

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Prakash V, Srinivas K, Srivastva A (2008) Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max) based cropping systems under the rainfed conditions in north-west Himalayan region. Soil Tillage Res 100(1–2):78–82

    Article  Google Scholar 

  • Singh ND, Ding Y, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation. Methods Mol Biol 483:163–192. https://doi.org/10.1007/978-1-59745-407-0_10

    Article  CAS  PubMed  Google Scholar 

  • Śliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E (2007) Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum) background. Theor Appl Genet 115:101–112

    Article  PubMed  Google Scholar 

  • Soares RM, Siqueira NM, Prabhakaram MP, Ramakrishna S (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92:969–982

    Article  CAS  Google Scholar 

  • Sugio A, Dubreuil G, Giron D, Simon JC (2015) Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66(2):467–478. https://doi.org/10.1093/jxb/eru435

    Article  CAS  PubMed  Google Scholar 

  • Szu SC, Lin KF, Hunt S, Chu C, Thinh ND (2014) Phase I clinical trial of O-acetylated pectin conjugate, a plant polysaccharide based typhoid vaccine. Vaccine 32(22):2618–2622. https://doi.org/10.1016/j.vaccine.2014.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabein S, Jansen M, Noris E, Vaira AM, Marian D, Behjatnia SAA, Accotto GP, Miozzi L (2020) The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Front Plant Sci 11:533338. https://doi.org/10.3389/fpls.2020.533338

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan EC, Lamers P (2021) Circular bioeconomy concepts—a perspective. Front Sustain 2:701509

    Article  Google Scholar 

  • Tecson Mendoza EM, Laurena AC, Botella JR (2008) Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14:423–462. https://doi.org/10.1016/s1387-2656(08)00019-7

    Article  PubMed  Google Scholar 

  • Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A (2020) Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol 61:209–216. https://doi.org/10.1016/j.copbio.2020.01.004

    Article  CAS  PubMed  Google Scholar 

  • Tripathy S, Dassarma B, Bhattacharya M, Matsabisa MG (2021) Plant-based vaccine research development against viral diseases with emphasis on Ebola virus disease: a review study. Curr Opin Pharmacol 60:261–267. https://doi.org/10.1016/j.coph.2021.08.001

    Article  CAS  PubMed  Google Scholar 

  • Ward BJ, Makarkov A, Séguin A, Pillet S, Trépanier S, Dhaliwall J, Libman MD, Vesikari T, Landry N (2020) Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): two multicentre, randomised phase 3 trials. Lancet 396(10261):1491–1503. https://doi.org/10.1016/s0140-6736(20)32014-6

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 7:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 5(4):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuki Y, Mejima M, Kurokawa S, Hiroiwa T, Takahashi Y, Tokuhara D, Nochi T, Katakai Y, Kuroda M, Takeyama N, Kashima K, Abe M, Chen Y, Nakanishi U, Masumura T, Takeuchi Y, Kozuka-Hata H, Shibata H, Oyama M, Tanaka K, Kiyono H (2013) Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnol J 11(7):799–808. https://doi.org/10.1111/pbi.12071

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7(3):313–321

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gong F, Song Y, Liu K, Wan Y (2019) De novo transcriptome analysis of lettuce (Lactuca sativa L.) and the identification of structural genes involved in anthocyanin biosynthesis in response to UV-B radiation. Acta Physiol Plant 41:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debapriya Garabadu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babu, R., Pancholi, B., Rao, A., Garabadu, D. (2024). Bioeconomy for Sustainable Biomaterials and Bioproduct Development. In: Garg, V.K., Kataria, N. (eds) Bioeconomy for Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-97-1837-5_16

Download citation

Publish with us

Policies and ethics