Skip to main content

Development, Design and Implementation of Human–Computer Interaction-Based Lower Limb Exoskeleton Rehabilitation Therapy

  • Conference paper
  • First Online:
Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM 2023)

Abstract

Stroke-based “FAST” strokes are one of the main ways to cause ischemic disability due to long-term numbness in the lower extremities. Researchers have studied and clinically tested and evaluated traditional lower extremity exoskeletons in a field test manner yielding a rehabilitation efficiency of only 27%. The research is based on an overview and testing study of the human–computer interaction-based lower limb exoskeleton system, human–computer interaction-based lower limb exoskeleton human–computer interaction performance and system data processing, and assessment and gait analysis of human–computer interaction-based lower limb exoskeleton biomechanics. It is also compared with state-of-the-art instrumentation and robot-assisted technologies. The researchers first describe the results achieved on human–computer-interactive lower extremity exoskeletons versus the shortcomings of current evaluations and based on the identified clinical needs and opportunities offered by robotic devices, we propose future directions for rehabilitation robotics research. The review and recommendations provided in this paper are intended to guide the design, validation, and translation to the clinic of the next generation of robotic-assisted functional assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. o. E. United Nations and P. D. Social Affairs: World Population Prospects 2019: Highlights (2019)

    Google Scholar 

  2. Brown-Triolo, D.L., Roach, M.J., Nelson, K., Triolo, R.J.: Consumer perspectives on mobility: implications for neuroprosthesis design. J. Rehabil. Res. Dev. 39(6), 659–670 (2002)

    Google Scholar 

  3. Hesse, S., Bertelt, C., Jahnke, M.T., et al.: Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients. Stroke 26, 976–981 (1995)

    Article  Google Scholar 

  4. Wirz, M., Zemon, D.H., Rupp, R., Scheel, A., Colombo, G., Dietz, V., Hornby, T.G.: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch. Phys. Med. Rehabil. 86(4), 672–680 (2005)

    Article  Google Scholar 

  5. Van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., Huerlimann, M., Friedli, L., Vollenweider, I., Moraud, E.M., Duis, S., Dominici, N., Micera, S., Musienko, P., Courtine, G.: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085), 1182–1185 (2012)

    Article  Google Scholar 

  6. Quintero, H.A., Farris, R.J., Hartigan, C., Clesson, I., Goldfarb, M.: A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Inj. Rehabil. 17(1), 25–33 (2011)

    Article  Google Scholar 

  7. Zhou, L., Chen, W., Wang, J., et al.: Design of a lower limb rehabilitation robot based on 3-RPR parallel mechanism. In: 2017 29th Chinese Control and Decision Conference (CCDC). IEEE (2017)

    Google Scholar 

  8. Cao, F.C., Xing, X.: Gait analysis and trajectory planning for lower limb rehabilitation training. Appl. Mech. Mater. 672–674(3), 1940–1943 (2014)

    Article  Google Scholar 

  9. Zhiyong, T., Xiaodong, X., Zhongcai, P.: Trajectory planning and mechanic’s analysis of lower limb rehabilitation robot. Bio-Med. Mater. Eng. 26(s1), S347–S355 (2015)

    Article  Google Scholar 

  10. Goodworth, A.D., Peterka, R.J.: Identifying mechanisms of stance control: a single stimulus multiple output model-fit approach. J. Neurosci. Methods 296, 44–56 (2018)

    Article  Google Scholar 

  11. Kwakkel, G., Wagenaar, R.C., Twisk, J.W.R., et al.: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 354, 191–196 (1999)

    Article  Google Scholar 

  12. Yu, H., Cruz, M.S., Chen, G., Huang, S., Zhu, C., Chew, E., Yee Sien, N., Thakor, N.V.: Mechanical design of a portable knee-ankle-foot robot. In: Proceedings of IEEE International Conference on Robotics and Automation, May 6–10 2013, Karlsruhe, Germany, pp. 2175–2180 (2013)

    Google Scholar 

  13. Sawicki, G.S., Ferris, D.P.: A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. Neuroeng. Rehabil. 6, 23 (2009)

    Article  Google Scholar 

  14. Kazerooni, H., Steger, R., Huang, L.H.: Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX). Int. J. Robot. Res. 25(5–6), 561–573 (2006)

    Article  Google Scholar 

  15. Kawamoto, H., Sankai, Y.: Comfortable power assist control method for walking aid by HAL-3. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Oct 6–9 2002, p. 6 (2002)

    Google Scholar 

  16. Racine, J.L.: Control of a Lower Extremity Exoskeleton for Human Performance Amplification. Ph.D. dissertation, University of California, Berkeley (2003)

    Google Scholar 

  17. Nogueira, S.L., Lambrecht, S., Inoue, R.S., Bortole, M., Montagnoli, A.N., Moreno, J.C., Rocon, E., Terra, M.H., Siqueira, A.A., Pons, J.L.: Global Kalman filter approaches to estimate absolute angles of lower limb segments. Biomed. Eng. Online 16(1), 58 (2017)

    Article  Google Scholar 

  18. Wu, X., Liu, D.-X., Liu, M., Chen, C., Guo, H.: Individualized gait pattern generation for sharing lower limb exoskeleton robot. IEEE Trans. Autom. Sci. Eng. 15(4), 1459–1470 (2018)

    Article  Google Scholar 

  19. Vermeulen, J., Verrelst, B., Vanderborght, B., Lefeber, D., Guillaume, P.: Trajectory planning for the walking biped lucy. Int. J. Robot. Res. 25(9), 867–887 (2006)

    Article  Google Scholar 

  20. Mooney, L.M., Rouse, E.J., Herr, H.M.: Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. NeuroEng. Rehabil. (2014)

    Google Scholar 

  21. Shi, X.: Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot. J. Mech. Eng. 50(3), 41 (2014)

    Article  Google Scholar 

  22. Sawicki, G.S., Ferris, D.P.: Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J. Exp. Biol. 21–31 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, J., Cai, J. (2024). Development, Design and Implementation of Human–Computer Interaction-Based Lower Limb Exoskeleton Rehabilitation Therapy. In: Yue, X., Yuan, K. (eds) Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials. MEACM 2023. Mechanisms and Machine Science, vol 156. Springer, Singapore. https://doi.org/10.1007/978-981-97-1678-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1678-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1677-7

  • Online ISBN: 978-981-97-1678-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics