Skip to main content

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 156))

  • 37 Accesses

Abstract

In the context of industrialization 4.0, the manufacturing industries of various countries are developing in the direction of automation, integration and flexibility, and the apply of intelligent industrial robots to gradually replace manual production has become inevitable. As the earliest robot, industrial robot has become an important part of intelligent manufacturing equipment. In this paper, firstly, the background and significance of the emergence of industrial robots are elaborated. Secondly, its current research status is analyzed, and then the classification of commonly used industrial robots is explained, and then the research status of the key technologies of industrial robots is summarized. Finally, the future development prospect of industrial robots is forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chenghong, B.: Machine hand in industrial application status and development trend. Agric. Mach. 2, 105–106 (2012)

    Google Scholar 

  2. Liutao. Research on Rapid Design of Industrial Manipulator Based on Knowledge. Xi’an Polytechnic University (2020)

    Google Scholar 

  3. Fengtao, H.A.N.: Overview of industrial robotics research and development. Robot. Technol. Appl. 05, 23–26 (2021)

    Google Scholar 

  4. Na, L.: Application of siemens smart200 and S7-1200 Plc complex instructions in industrial automation. In: Proceedings of 2019 International Conference on Information Science, Medical and Health Informatics (ISMHI 2019). Francis Academic Press, pp. 338–343 (2019)

    Google Scholar 

  5. Lianfa, L., Mengjie, D., Junjun, L.: The development of robots: a comparison between China and international. Macro Qual. Res. 7(03), 38–50 (2019)

    Google Scholar 

  6. https://www.zhihu.com/question/554615620/answer/3113282581?utm_id=0

  7. Jun, Z., Yingjun, L., Dexing, P., Yuhong, N.: Combined application of industrial robot and CNC machining. Metal Processing (Cold Processing), 2017(Z1):96–99.

    Google Scholar 

  8. Jun, Y., Yong, L., Yirong, W.: Realization of automatic loading and unloading function for motor end cover machining based on GSK-RB industrial robot[J]. Electromechanical Engineering Technology,2013,42(07):42–44+146.

    Google Scholar 

  9. Wang, X., Qian, M.: Implications of the 863 program for the development of advanced manufacturing technology. Electromechanical Prod. Dev. Innov. 31(5), 8–10+30 (2018)

    Google Scholar 

  10. Hu, J.: Research on talent demand of high-end manufacturing industry under the background of “Made in China 2025"–taking industrial robotics major as an example. Sci. Technol. Commun. 11(17), 139–140 (2019)

    Google Scholar 

  11. Han, J.: Industrial Robotics, 5th edn, vol. 7, pp. 8–9. Huazhong University of Science and Technology Press, Wuhan (2022)

    Google Scholar 

  12. Hua Mingming. Research and Development of Loading and Un-loading Manipulator For Glass Bruting Machine[D]. Hebei Normal University of Science and Technology, 2021.

    Google Scholar 

  13. Guo, W.: Research and Development of Loading And Unloading Robot System for Oil Drum Refurbishing Production Line. Tianjin Vocational and Technical Normal University, 2019.

    Google Scholar 

  14. Fengbao, Y., Jinli, T., Jufeng, Z. et al.: ABB Industrial Robots Application Cases. Chongqing University Press (2019)

    Google Scholar 

  15. Baisheng, M.: Design and Research of Loading and Unloading Robot for Engine Tappet Automatic Inspection Line. Shenyang University of Technology (2018)

    Google Scholar 

  16. Mukhtar, M., Khudher, D., Kalganova, T.: A control structure for ambidextrous robot arm based on multiple adaptive neuro-fuzzy inference system. IET Control Theory Appl. 15(11), 1518–1532 (2021)

    Article  Google Scholar 

  17. Briot, S., Caro, S., Germain, C.: Design procedure for a fast and accurate parallel manipulator. J. Mech. Robot. 9(6), 061012 (2017)

    Article  Google Scholar 

  18. Puglisi, L.J., Saltaren, R.J., Portolés, G.R., Moreno, H., Cárdenas, P.F., Garcia, C.: Design and kinematic analysis of 3PSS-1S wrist for needle insertion guidance. Robot. Auton. Syst. 61(5) (2013)

    Google Scholar 

  19. Aziz, M.A.S., Zhanibek, M., Elsayed, A.S.A., et al.: Design and analysis of a proposed light weight three DOF planar industrial manipulator. In: 2016 IEEE Industry Applications Society Annual Meeting, pp. 1–7. IEEE (2016)

    Google Scholar 

  20. Jing, S.: Design and research on the transfer robot for cosmetic cotton. Donghua University (2022)

    Google Scholar 

  21. Rui, H.Y.: Development of Truss Manipulator For Loading and Unloading of Tooth Blank. Zhejiang Institute of Science and Technology (2022)

    Google Scholar 

  22. Li, S., Xu, M., Quo, J., Wang, B., Hong, Y.: Design of fuzzy cross coupling controller for cartesian robot. In: Proceedings of the 2017 International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2017) (2017)

    Google Scholar 

  23. Nie, J., Ren, Y., Chi, C., Zhang, J.: Development of cheese rectangular coordinate robot control system. In: Proceedings of the International Conference on Chemical, Material and Food Engineering (2015)

    Google Scholar 

  24. John, I., Mohan, S., Rybak, L.: numerical investigations, development and control of a cartesian (3-PRRR) parallel manipulator. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 236(15) (2022)

    Google Scholar 

  25. Boscariol, P., Richiedei, D.: Energy-efficient design of multipoint trajectories for Cartesian robots. Int. J. Adv. Manuf. Technol. 102(5–8) (2019)

    Google Scholar 

  26. Mi, Y., Jinling, Y.: Design of right-angle coordinate robot control system based on PLC. Sci. Technol. Bull. 34(8), 185–188 (2018)

    Google Scholar 

  27. Jiaqi, J.I.N., Zhenwei, X.U., Chang, L.I.U.: Research on control system of right-angle coordinate handling robot. Heavy Mach. 06, 49–55 (2016)

    Google Scholar 

  28. https://www.bilibili.com/read/cv19164379/

  29. Sakshi, G., Sameer, G., Anupam, A., et al.: A novel modular approach for kinematic modelling and analysis of planar hybrid manipulators. J. Mech. Des. 2(4), 53–56 (2021)

    Google Scholar 

  30. Kang, B.H., Jin. H.K., Choi. K.Y., et al.: Design of a truss body parallel manipulator to avoid the stress concentration. In: 2018 15th International Conference on Ubiquitous Robots (UR) (2018)

    Google Scholar 

  31. Au, C., Barnett, J., Lim, S. H., Duke, M.: Workspace analysis of Cartesian robot system for kiwifruit harvesting. Ind. Robot.: Int. J. Robot. Res. Appl. 47(4) (2020)

    Google Scholar 

  32. Bottin, M., Cipriani, G., Tommasino, D., Doria, A.: Analysis and control of vibrations of a cartesian cutting machine using an equivalent robotic model. Machines 9(8) (2021)

    Google Scholar 

  33. Fukang, Z.H.U., Yi, L.I.U., Hang, D.O.N.G., Fanjie, M.E.N.G., Ming, C.O.N.G.: Optimized design and analysis of cantilever structure of Cartesian Coordinate Robot. Comb. Mach. Tools Autom. Mach. Technol. 07, 60–63 (2017)

    Google Scholar 

  34. Zhao, D.X., Di, E.C., Shou, G.Z., et al.: Kinematics of a 6-DOF feeding and unloading manipulator. Key Eng. Mater. 620(43), 490–495 (2014)

    Article  Google Scholar 

  35. Hautakoski, A., Aref, M.M., Mattila, J.: Reconfigurable manipulator simulation for robotics and multimodal machine learning application: Aaria. J. Mech. Des. 54(3), 234–240 (2018)

    Google Scholar 

  36. Su, C., Zhang, S., Lou, S., et al.: Trajectory coordination for a cooperative multi-manipulator system and dynamic simulation error analysis. Robot. Auton. Syst. 4(8), 131–135 (2020)

    Google Scholar 

  37. Li, G.: Research on Loading and Unloading Robot for Hollow Cup Coil Automatic Production Line. Harbin Engineering University, Harbin (2017)

    Google Scholar 

  38. Wen, Y.L., Liu, T., Li, G., et al.: Design optimization of loading manipulator for intelligent bamboo cutting machine. Mech. Des. 38(2), 54–59 (2021)

    Google Scholar 

  39. Chen, K.: Design and Simulation of a Loading and Unloading Robot for a Production Line. Shenyang University of Technology (2021)

    Google Scholar 

  40. Arents, J., Greitans, M.: Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 12(2), 937 (2022)

    Article  Google Scholar 

  41. Li, Z., Li, S., Luo, X.: An overview of calibration technology of industrial robots. IEEE/CAA J. Autom. Sin. 8(1), 23–36 (2021)

    Article  Google Scholar 

  42. Zerun, Z.H.U., Xiaowei, T., Chen, C., et al.: High precision and efficiency robotic milling of complex parts: challenges, approaches and trends. Chin. J. Aeronaut. 35(2), 22–46 (2022)

    Article  Google Scholar 

  43. Fu, X.M., Bao, Q., Xie, H., et al.: Diffusion of industrial robotics and inclusive growth: labour market evidence from cross country data. J. Bus. Res. 122, 670–684 (2021)

    Article  Google Scholar 

  44. Tantawi, K.H., Sokolov, A., Tantawi, O.: Advances in industrial robotics: From industry 3.0 automation to industry 4.0 collaboration. In: 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), pp. 1–4. IEEE (2019)

    Google Scholar 

  45. Aivaliotis, P., Aivaliotis, S., Gkournelos, C., et al.: Power and force limiting on industrial robots for human-robot collaboration. Robot. Comput. Integr. Manuf. 59, 346–360 (2019)

    Article  Google Scholar 

  46. Ardanza, A., Moreno, A., Segura, Á., et al.: Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. Int. J. Prod. Res. 57(12), 4045–4059 (2019)

    Google Scholar 

  47. Harapanahalli, S., Mahony, N.O., Hernandez, G.V., et al.: Autonomous navigation of mobile robots in factory environment. Procedia Manuf. 38, 1524–1531 (2019)

    Article  Google Scholar 

  48. Mukherjee, D., Gupta, K., Chang, L.H., et al.: A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. Integr. Manuf. 73, 102231 (2022)

    Article  Google Scholar 

  49. Penumuru, D.P., Muthuswamy, S., Karumbu, P.: Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. J. Intell. Manuf. 31(5), 1229–1241 (2020)

    Google Scholar 

  50. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 33(5), 429–439 (2020)

    Article  Google Scholar 

  51. Liu, J., Chang, H., Forrest, J.Y.L., et al.: Influence of artificial intelligence on technological innovation: evidence from the panel data of China’s manufacturing sectors. Technol. Forecast. Soc. Chang. 158, 120142 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Calderon, A.D., Cui, W. (2024). Research Progress and Prospect of Industrial Robot. In: Yue, X., Yuan, K. (eds) Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials. MEACM 2023. Mechanisms and Machine Science, vol 156. Springer, Singapore. https://doi.org/10.1007/978-981-97-1678-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1678-4_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1677-7

  • Online ISBN: 978-981-97-1678-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics