Skip to main content

Analysis of Bandgap Formation Mechanism Based on the Programmable Curved-Beam Periodic Structure

  • Conference paper
  • First Online:
Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 156))

  • 39 Accesses

Abstract

In order to investigate the propagation and isolation mechanisms of elastic waves, we propose a programmable curved beam periodic structure (PCBPS). The PCBPS is assembled by a unit cell containing bistable curved beams, which is equivalent to a spring oscillator system, and is used to analyze the principle of bandgap formation. We employ the finite element method (FEM) and theoretical analysis to validate the proposed equivalent model. By equating the spring oscillator system, we compute closed-form solutions to demonstrate the accuracy and predictability of the dispersion relation. Our results show that the spring-oscillator model can accurately predict the structural bandgap of PCBPS while obtaining the effect of the geometrical parameters of the unit cell on the structural bandgap. The ideas presented and the results obtained have significant potential for designing functional structures and facilitating the practical application of periodic structures for wave insulation and propagation control in different frequency ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, H., Sun, C., Huang, G.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  Google Scholar 

  2. Zhou, J., Wang, K., Xu, D., Ouyang, H.: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms. Phys. Lett. A 381, 3141–3148 (2017)

    Article  Google Scholar 

  3. Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)

    Article  Google Scholar 

  4. El-Borgi, S., Fernandes, R., Rajendran, P., Yazbeck, R., Boyd, J.G., Lagoudas, D.C.: Multiple bandgap formation in a locally resonant linear metamaterial beam: theory and experiments. J. Sound Vib. 488, 115647 (2020)

    Article  Google Scholar 

  5. Ji, J.C., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021)

    Article  Google Scholar 

  6. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  7. Wu, T.T., Huang, Z.G., Tsai, T.C., Wu, T.C.: Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Lett. 93, 111902 (2008)

    Article  Google Scholar 

  8. Tang, X.L., Ma, T.X., Wang, Y.S.: Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Appl. Phys. Lett. 122, 112201 (2023)

    Article  Google Scholar 

  9. Aghighi, F., Morris, J., Amirkhizi, A.V.: Low-frequency micro-structured mechanical metamaterials. Mech. Mater. 130, 65–75 (2019)

    Article  Google Scholar 

  10. Zhao, S.-D., Dong, H.-W., Miao, X.-B., Wang, Y.-S., Zhang, C.: Broadband coding metasurfaces with 2-bit manipulations. Phys. Rev. Appl. 17, 034019 (2022)

    Article  Google Scholar 

  11. Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019)

    Article  Google Scholar 

  12. Zhou, J., Dou, L., Wang, K., Xu, D., Ouyang, H.: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96, 647–665 (2019)

    Article  Google Scholar 

  13. Fan, H., Yang, L., Tian, Y., Wang, Z.: Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 243, 112244 (2020)

    Article  Google Scholar 

  14. Liu, F., Shi, P., Xu, Y., Cao, L., Shen, Y., Yang, Z.: Total reflection of flexural waves by circular meta-slab and its application in vibration isolation. Int. J. Mech. Sci. 212, 106806 (2021)

    Article  Google Scholar 

  15. Wu, Z.J., Liu, W.Y., Li, F.M., Zhang, C.Z.: Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Process. 134, 106357 (2019)

    Article  Google Scholar 

  16. Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)

    Article  Google Scholar 

  17. Deng, J., Xu, Y.X., Guasch, O., Gao, N.S., Tang, L.L., Guo, W.J.: A wave and Rayleigh-Ritz method to compute complex dispersion curves in periodic lossy acoustic black holes. J. Sound Vib. 546, 117449 (2023)

    Article  Google Scholar 

  18. Dong, H.-W., Zhao, S.-D., Miao, X.-B., Shen, C., Zhang, X., Zhao, Z., et al.: Customized broadband pentamode metamaterials by topology optimization. J. Mech. Phys. Solids 152, 104407 (2021)

    Article  MathSciNet  Google Scholar 

  19. Dong, H.W., Zhao, S.D., Wang, Y.S., Zhang, C.Z.: Topology optimization of anisotropic broadband double-negative elastic metamaterials. J. Mech. Phys. Solids 105, 54–80 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ma, T.-X., Fan, Q.-S., Zhang, C., Wang, Y.-S.: Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mech. Lett. 50, 101578 (2022)

    Article  Google Scholar 

  21. Qiu, J., Lang, J.H., Slocum, A.H.: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004)

    Article  Google Scholar 

  22. Pi, Y.-L., Bradford, M.A.: In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints. Eng. Struct. 56, 1496–1510 (2013)

    Article  Google Scholar 

  23. Huang, W.C., Ma, C., Qin, L.H.: Snap-through behaviors of a pre-deformed ribbon under midpoint loadings. Int. J. Solids Struct. 232, 111184 (2021)

    Article  Google Scholar 

  24. Mao, J.-J., Wang, S., Tan, W., Liu, M.: Modular multistable metamaterials with reprogrammable mechanical properties. Eng. Struct. 272, 114976 (2022)

    Article  Google Scholar 

  25. Tan, X.J., Chen, S., Zhu, S.W., Wang, B., Xu, P.F., Yao, K.L., et al.: Reusable metamaterial via inelastic instability for energy absorption. Int. J. Mech. Sci. 155, 509–517 (2019)

    Article  Google Scholar 

  26. Ma, H., Wang, K., Zhao, H., Mu, R., Yan, B.: A reusable metastructure for tri-directional energy dissipation. Int. J. Mech. Sci. 214, 106870 (2022)

    Article  Google Scholar 

  27. Che, K., Yuan, C., Wu, J., Jerry Qi, H., Meaud, J.: Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J. Appl. Mech. 84, 011004 (2017)

    Article  Google Scholar 

  28. Correa, D.M., Seepersad, C.C., Haberman, M.R.: Mechanical design of negative stiffness honeycomb materials. Integr. Mater. Manuf. Innov. 4, 165–175 (2015)

    Article  Google Scholar 

  29. Meaud, J., Che, K.K.: Tuning elastic wave propagation in multistable architected materials. Int. J. Solids Struct. 122, 69–80 (2017)

    Article  Google Scholar 

  30. Liu, E., Fang, X., Wen, J.: Harmonic and shock wave propagation in bistable periodic structure: regularity, randomness, and tunability. J. Vib. Control 0, 1–12 (2021)

    Google Scholar 

  31. Hussein, H., Le Moal, P., Bourbon, G., Haddab, Y., Lutz, P.: Modeling and stress analysis of a pre-shaped curved beam: influence of high modes of buckling. Int. J. Appl. Mech. 7(4), 1550055 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jia Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, H., Mao, JJ. (2024). Analysis of Bandgap Formation Mechanism Based on the Programmable Curved-Beam Periodic Structure. In: Yue, X., Yuan, K. (eds) Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials. MEACM 2023. Mechanisms and Machine Science, vol 156. Springer, Singapore. https://doi.org/10.1007/978-981-97-1678-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1678-4_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1677-7

  • Online ISBN: 978-981-97-1678-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics