Skip to main content

Active Vibration Control of Graphene Platelets Reinforced Porous Nanocomposite Piezoelectric Cantilever Beams

  • Conference paper
  • First Online:
Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 156))

  • 43 Accesses

Abstract

The active vibration control of a composite piezoelectric cantilever beam is investigated in this paper. The intermediate layer of the beam is made of the graphene platelets reinforced porous nanocomposite, and the piezoelectric actuator and sensor adhere to the top and bottom surfaces of the intermediate layer. The symmetric distribution (PD-X and PD–O) and uniform distribution (PD-U) of porosity are taken into account. The graphene platelets used to enhance material properties consider three distribution forms, the symmetric pattern (GPL-X and PD–O) and uniform pattern (GPL-U). Computing the effective Young's modulus, Poisson's ratio and mass density by the Halpin–Tsai model and the rule of mixture for all distributions, respectively. Then, the motion equation of the composite piezoelectric cantilever beam is derived using Lagrange's principle by von Karman's nonlinear shear deformation theory. In order to achieve vibration reduction effect, the active vibration control is applied with a velocity feedback control algorithm. Initially, the computed outcomes are cross-referenced with extant literature to validate the accuracy of the employed solution methodologies. Subsequently, an in-depth analysis is undertaken to elucidate the impacts of diOOerse material parameters and feedback control gains on the active vibration control efficacy of the piezoelectric beam reinforced with Graphene Platelets within a porous nanocomposite framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: A review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)

    Article  Google Scholar 

  2. Wadley, H.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 2331–2343 (2003)

    Article  Google Scholar 

  3. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  4. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Structures 107, 39–48 (2016)

    Article  Google Scholar 

  5. Duarte, I., Ventura, E., Olhero, S., Ferreira, J.M.F.: An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon 95, 589–600 (2015)

    Article  Google Scholar 

  6. Antenucci, A., Guarino, S., Tagliaferri, V., Ucciardello, N.: Electro-deposition of graphene on aluminium open cell metal foams. Mater. Des. 71, 78–84 (2015)

    Article  Google Scholar 

  7. Wu, H.L., Yang, J., Kitipornchai, S.: Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos. B Eng. 90, 86–96 (2016)

    Article  Google Scholar 

  8. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Article  Google Scholar 

  9. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Article  Google Scholar 

  10. Li, Z., Young, R.J., Wilson, N.R., Kinloch, I.A., Vallés, C., Li, Z.: Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 123, 125–133 (2016)

    Article  Google Scholar 

  11. Narayanan, S., Balamurugan, V.: Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. J. Sound Vib. 262, 529–562 (2003)

    Article  Google Scholar 

  12. Z.-G. Song, F.-M. Li, Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs, Smart Materials and Structures 20, 2011.

    Google Scholar 

  13. Song, Z.G., Zhang, L.W., Liew, K.M.: Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. Int. J. Mech. Sci. 105, 90–101 (2016)

    Article  Google Scholar 

  14. Y. Zhang, H. Niu, S. Xie, X. Zhang, Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator, Smart Materials and Structures 17, 2008.

    Google Scholar 

  15. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H., Nguyen-Thoi, T.: An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput. Methods Appl. Mech. Eng. 332, 25–46 (2018)

    Article  MathSciNet  Google Scholar 

  16. Selim, B.A., Liu, Z., Liew, K.M.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Structures 145, 1851–1863 (2019)

    Article  Google Scholar 

  17. Roberts, A.P., Garboczi, E.J.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189–197 (2001)

    Article  Google Scholar 

  18. A. P. Roberts, E. J. Garboczi, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, 1033–1054, 2002.

    Google Scholar 

  19. Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019)

    Article  Google Scholar 

  20. Shokrieh, M.M., Esmkhani, M., Shokrieh, Z., Zhao, Z.: Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method. Comput. Mater. Sci. 92, 444–450 (2014)

    Article  Google Scholar 

  21. Guzmán de Villoria, R., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)

    Article  Google Scholar 

  22. F. Liu, P. Ming, J. Li, Ab initiocalculation of ideal strength and phonon instability of graphene under tension, Physical Review B 76, 2007.

    Google Scholar 

  23. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. Rep. 74, 281–350 (2013)

    Article  Google Scholar 

  24. Jagannadham, K.: Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets. Metall. and Mater. Trans. B. 43, 316–324 (2011)

    Article  Google Scholar 

  25. Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 55, 41–64 (2013)

    Article  Google Scholar 

  26. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

$$\left( {I_{1} ,I_{2} ,I_{3} } \right) = \mathop \smallint \limits_{{ - \frac{h}{2}}}^{{ + \frac{h}{2}}} \rho \left( z \right)\left( {1,z,z^{2} } \right)dz,$$
$$\left( {I_{{11}} ,I_{{22}} ,I_{{33}} } \right) = \mathop \smallint \limits_{{ - \frac{H}{2}}}^{{ - \frac{h}{2}}} \rho \left( p \right)\left( {1,z,z^{2} } \right)dz + \mathop \smallint \limits_{{\frac{h}{2}}}^{{\frac{H}{2}}} \rho \left( p \right)\left( {1,z,z^{2} } \right)dz,$$
$$\left( {A_{{11}} ,B_{{11}} ,D_{{11}} ,A_{{55}} } \right) = \mathop \smallint \limits_{{ - \frac{h}{2}}}^{{ + \frac{h}{2}}} \left( {\frac{E}{{1 - v^{2} }},z\frac{E}{{1 - v^{2} }},z^{2} \frac{E}{{1 - v^{2} }},\frac{E}{{2\left( {1 + v} \right)}}} \right)dz,$$
$$\left( {N_{p} ,M_{p} } \right) = \mathop \smallint \limits_{{\frac{h}{2}}}^{{\frac{H}{2}}} 2e_{{31}} \frac{1}{{h_{p} }}\left( {1,z} \right)dz,$$
$$\begin{array}{*{20}l} {\left( {E_{{11}} ,F_{{11}} ,G_{{11}} ,E_{{55}} } \right) = \mathop \smallint \limits_{{ - \frac{H}{2}}}^{{ - \frac{h}{2}}} \left( {\frac{{E_{p} }}{{1 - v_{p} ^{2} }},z\frac{{E_{p} }}{{1 - v_{p} ^{2} }},z^{2} \frac{{E_{p} }}{{1 - v_{p} ^{2} }},\frac{{E_{p} }}{{2\left( {1 + v_{p} } \right)}}} \right)dz} \hfill \\ {{\text{}} + \mathop \smallint \limits_{{\frac{h}{2}}}^{{\frac{H}{2}}} \left( {\frac{{E_{p} }}{{1 - v_{p} ^{2} }},z\frac{{E_{p} }}{{1 - v_{p} ^{2} }},z^{2} \frac{{E_{p} }}{{1 - v_{p} ^{2} }},\frac{{E_{p} }}{{2\left( {1 + v_{p} } \right)}}} \right)dz,} \hfill \\ \end{array}$$
$${\mathbf{K}}_{\mathbf{a}}^{1}=-\sum\limits_{i=1}^{n}{\int }_{0}^{L}\left({N}_{p}\frac{d{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}}^{\mathbf{T}}}{dx}\right)dx,{\mathbf{K}}_{\mathbf{a}}^{2}=-\sum_{i=1}^{n}{\int }_{0}^{L}\left(\frac{1}{2}{N}_{p}\frac{d{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}}{dx}\frac{d{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}}^{\mathbf{T}}}{dx}\mathbf{W}\right)dx,$$
$${\mathbf{K}}_{\mathbf{a}}^{3}=-\sum\limits_{i=1}^{n}{\int }_{0}^{L}\left({M}_{p}\frac{d{{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}}^{\mathbf{T}}}{dx}\right)dx$$
$$\begin{aligned}{\mathbf{M}}^{\mathbf{u}\mathbf{u}}&={\int }_{0}^{L}{I}_{1}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}}^{\mathbf{T}}dx+\sum_{i=1}^{n}{\int }_{0}^{L}{I}_{11}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}}^{\mathbf{T}}dx\boldsymbol{ }\boldsymbol{ }{\mathbf{M}}^{\mathbf{u}{\varvec{\upphi}}} \\ & ={\int }_{0}^{L}{I}_{2}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}{{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}}^{\mathbf{T}}dx+\sum_{i=1}^{n}{\int }_{0}^{L}{I}_{22}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}{{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}}^{\mathbf{T}}dx \\ & {\mathbf{M}}^{{\varvec{\upphi}}\mathbf{u}}={\int }_{0}^{L}{I}_{2}{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}}^{\mathbf{T}}dx+\sum_{i=1}^{n}{\int }_{0}^{L}{I}_{22}{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{u}}}^{\mathbf{T}}dx {\mathbf{M}}^{{\varvec{\upphi}}{\varvec{\upphi}}} \\ & ={\int }_{0}^{L}{I}_{3}{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}{{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}}^{\mathbf{T}}dx+\sum_{i=1}^{n}{\int }_{0}^{L}{I}_{33}{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}{{\mathbf{N}}_{\mathbf{m}}^{{\varvec{\upphi}}}}^{\mathbf{T}}dx \\ & {\mathbf{M}}^{\mathbf{w}\mathbf{w}}={\int }_{0}^{L}{I}_{1}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}}^{\mathbf{T}}dx+\sum_{i=1}^{n}{\int }_{0}^{L}{I}_{11}{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}{{\mathbf{N}}_{\mathbf{m}}^{\mathbf{w}}}^{\mathbf{T}}dx {\mathbf{M}}^{\mathbf{u}\mathbf{w}}=0 {\mathbf{M}}^{\mathbf{w}\mathbf{u}} \\ & =0 {\mathbf{M}}^{\mathbf{w}{\varvec{\upphi}}}=0 {\mathbf{M}}^{{\varvec{\upphi}}\mathbf{w}}=0\end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X.Y., Chen, J., Zhang, W. (2024). Active Vibration Control of Graphene Platelets Reinforced Porous Nanocomposite Piezoelectric Cantilever Beams. In: Yue, X., Yuan, K. (eds) Proceedings of 2023 the 6th International Conference on Mechanical Engineering and Applied Composite Materials. MEACM 2023. Mechanisms and Machine Science, vol 156. Springer, Singapore. https://doi.org/10.1007/978-981-97-1678-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1678-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1677-7

  • Online ISBN: 978-981-97-1678-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics