Skip to main content

A Comprehensive Review of Recent Progress on the Removal of Pharmaceutical Compounds

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing (ICMMPM 2023)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 44))

Included in the following conference series:

  • 42 Accesses

Abstract

Adsorption is one of the most tried-and-true methods when it could be used to remove several pollutants from wastewater. Adsorption can remove a wide variety of pollutants. In its most basic form, the adsorption process does nothing more than collect the pollutants that are present in the wastewater on the surface of the adsorbent. The capacity of the adsorbent is dependent on factors such as its porosity, surface area, pore diameter, and the type of adsorbent. Photodegradation of pharmaceutical compounds using graphene oxide has been extensively studied, and the results have shown promising outcomes under various operating conditions. Graphene oxide is consisted of carbon atoms arranged in honeycomb lattice, showed larger surface area and excellent electron transport capabilities. Graphene-based composites received great attention due to providing good visible light activity, could capture a significant portion of solar radiation. In conclusion, several pharmaceutical compounds such as ibuprofen, carbamazepine, diphenhydramine, sulfamethoxazole, tetracycline, sulfamethazine, and chloramphenicol have been successfully removed using various techniques based on the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho, S.M.: A review of chemical activating agent on the properties of activated carbon. Int. J. Chem. Res. 1, 1–13 (2022)

    CAS  Google Scholar 

  2. Ho, S.M.: Activated carbon and metal chalcogenide in applied materials research. Phys. Sci. Bio-phys. J. 4, 1–10 (2020)

    Google Scholar 

  3. Xu, C., Lin, S., Wang, X., Chen, Y.: Ordered mesoporous carbon immobilized nano zero-valent iron in bromate removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 45, 3000–3006 (2014)

    Article  CAS  Google Scholar 

  4. Wang, L., Zhang, J., Liu, J., He, H.: Removal of bromate ion using powdered activated carbon. J. Environ. Sci. 22, 1846–1853 (2010)

    Article  CAS  Google Scholar 

  5. Zeino, A., Abulkibash, A., Khaled, M., Atieh, M.: Bromate removal from water using doped iron nanoparticles on multiwalled carbon nanotubes (CNTS). J. Nanomater., 61920 (2014). https://doi.org/10.1155/2014/561920

  6. Thakur, K., Kandasubramanian, B.: Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J. Chem. Eng. Data 64, 833–867 (2019)

    Article  CAS  Google Scholar 

  7. Chitrakar, R., Makita, Y., Sonoda, A., Hirotsu, T.: Adsorption of trace levels of bromate from aqueous solution by organo-montmorillonite. Appl. Clay Sci. 51, 375–379 (2011)

    Article  CAS  Google Scholar 

  8. Bhatnagar, A., Sillanpaa, M.: Sorption studies of bromate removal from water by nano-Al2O3. Sep. Sci. Technol. 47, 89–95 (2012)

    Article  CAS  Google Scholar 

  9. Xin, X., Sun, S., Wang, M., Zhao, Q.: Simultaneous adsorption/reduction of bromate in water using nano zero-valent iron supported on ordered mesoporous silica. Water Supply 19, 1330–1338 (2019)

    Article  CAS  Google Scholar 

  10. Li, S., Yang, Q., Zhong, Y., Chen, F.: Adsorptive bromate removal from aqueous solution by commercial strongly basic resin impregnated with hydrated ferric oxide (HFO): kinetics and Equilibrium studies. J. Chem. Eng. Data 61, 1305–1312 (2016)

    Article  CAS  Google Scholar 

  11. Liu, J., Shi, W., Liu, Y., Ou, W.: Chemically modified chitosan polymers for bromate removal. Water Supply. 17, 1062–1069 (2017)

    Article  CAS  Google Scholar 

  12. Montes, P., Asenjo, G., Santamaría, R., Menéndez, R.: Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29, 13443–13448 (2013)

    Article  Google Scholar 

  13. Boulanger, N., Kuzenkova, S., Iakunkov, A., Nordenström, A.: High surface area “3D graphene oxide” for enhanced sorption of radionuclides. Adv. Mater. Interf. (2022). https://doi.org/10.1002/admi.202200510

  14. Peng, W., Li, H., Liu, Y., Song, S.: A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017)

    Article  CAS  Google Scholar 

  15. Çalışkan, S., Wang, J., Kabacaoğlu, G., Kırkulak, S.: Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 56, 453–461 (2021)

    Article  Google Scholar 

  16. Banerjee, P., Das, P., Zaman, A.: Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 101, 45–53 (2016)

    Article  CAS  Google Scholar 

  17. Feng, X., Qiu, B., Sun, D.: Enhanced naproxen adsorption by a novel β-cyclodextrin immobilized the three-dimensional macrostructure of reduced graphene oxide and multiwall carbon nanotubes. Sep. Purif. Technol. (2022). https://doi.org/10.1016/j.seppur.2022.120837

    Article  Google Scholar 

  18. Moradi, O., Alizadeh, H., Sedaghat, S.: Removal of pharmaceuticals (diclofenac and amoxicillin) by maltodextrin/reduced graphene and maltodextrin/reduced graphene/copper oxide nanocomposites. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.134435

    Article  PubMed  Google Scholar 

  19. Brito, C., Gloria, D., Santos, E., Domingues, A.: Porous activated carbon/graphene oxide composite for efficient adsorption of pharmaceutical contaminants. Chem. Eng. Res. Des. 191, 387–400 (2023)

    Article  CAS  Google Scholar 

  20. Zhou, Y., Cao, S., Xi, C., Li, X.: A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Biores. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.121951

    Article  Google Scholar 

  21. Liu, F., Wu, Z., Wang, D., Yu, J.: Magnetic porous silica–graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 490, 207–214 (2016)

    Article  CAS  Google Scholar 

  22. Walker, M., Boyer, H.: Long-term performance of bicarbonate-form anion exchange: removal of dissolved organic matter and bromide from the St. Johns River, FL, USA. Water Res. 45, 2875–2886 (2011)

    Google Scholar 

  23. Xu, C., Wang, X., Shi, X., Lin, S.: Bromate removal from aqueous solutions by ordered mesoporous carbon. Environ. Technol. (United Kingdom) 35, 984–992 (2014)

    Google Scholar 

  24. Ho, S.M., Munir, M.: Short review on the use of oil palm shell in concrete and activated carbon. World J. Nano Sci. Eng. 10, 1–13 (2020)

    Article  CAS  Google Scholar 

  25. Marcelino, R., Andrade, L., Starling, M., Amorim, C.: Evaluation of aerobic and anaerobic biodegradability and toxicity assessment of real pharmaceutical wastewater from industrial production of antibiotics. Braz. J. Chem. Eng. 33, 445–452 (2016)

    Article  CAS  Google Scholar 

  26. Shi, Z., Hu, H., Shen, Y., Xu, J.: Long-term effects of oxytetracycline (OTC) on the granule-based anammox: process performance and occurrence of antibiotic resistance genes. Biochem. Eng. J. 127, 110–118 (2017)

    Article  CAS  Google Scholar 

  27. Yi, Q., Zhang, Y., Gao, Y., Tian, Z.: Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: simultaneous reduction of COD and ARGs. Water Res. 110, 211–217 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Al-Asheh, S., Bagheri, M., Aidan, A.: Membrane bioreactor for wastewater treatment: a review. Case Stud. Chem. Environ. Eng. (2021). https://doi.org/10.1016/j.cscee.2021.100109

    Article  Google Scholar 

  29. Mutamim, N., Noor, Z., Hassan, M., Yuniarto, A.: Membrane bioreactor: applications and limitations in treating high strength industrial wastewater. Chem. Eng. J. 225, 109–119 (2013)

    Article  CAS  Google Scholar 

  30. Iorhemen, O., Hamza, R., Tay, J.: Membrane Bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes (Basel) (2016). https://doi.org/10.3390/membranes6020033

    Article  PubMed  Google Scholar 

  31. Hu, Y., Wang, X., Tian, W., Ngo, H.: Towards stable operation of a dynamic membrane bioreactor (DMBR): operational process, behavior and retention effect of dynamic membrane. J. Membr. Sci. 498, 20–29 (2016)

    Article  CAS  Google Scholar 

  32. Cheng, D., Ngo, H., Guo, W., Liu, Y.: Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 621, 1664–1682 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Wu, B., Fane, A.: Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. Membranes (Basel) 2, 565–584 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Ladewig, B., Al-Shaeli, M.: Fouling in membrane bioreactors. In: Bradley, L., Muayad, N. (eds.) Fundamentals of Membrane Bioreactors, Materials, Systems and Membrane Fouling, pp. 39–85. Springer, Berlin (2017)

    Chapter  Google Scholar 

  35. Fangang, M., Chae, S., Anja, D., Shin, H.: Recent advances in membrane bioreactors (MBRs) membrane fouling and membrane material. Water Res. 43, 1489–1512 (2009)

    Article  Google Scholar 

  36. Quintelas, C., Mesquita, D., Torres, A., Costa, I.: Degradation of widespread pharmaceuticals by activated sludge: kinetic study, toxicity assessment, and comparison with adsorption processes. J. Water Process Eng. 33 (2020). https://doi.org/10.1016/j.jwpe.2019.101061

  37. Nguyen, P., Carvalho, G., Reis, M., Oehmen, A.: A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 188 (2021). https://doi.org/10.1016/j.watres.2020.116446

  38. Ghangrekar, M., Behera, M.: Suspended growth treatment processes. Comprehensive Water Qual. Purif. 3, 74–79 (2014)

    Article  Google Scholar 

  39. Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P.: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Biores. Technol. 224, 1–12 (2017)

    Article  CAS  Google Scholar 

  40. Dalton, H., Stirling, D.: Co-metabolism. Philos. Trans. Royal Soc. B Biol. Sci. (1982). https://doi.org/10.1098/rstb.1982.0056

  41. Chen, C., Aris, A., Yong, E., Noor, Z.: A review of antibiotic removal from domestic wastewater using the activated sludge process: removal routes, kinetics and operational parameters. Environ. Sci. Pollut. Res. 29, 4787–4802 (2022)

    Article  CAS  Google Scholar 

  42. Chan, Y., Chong, M., Law, C., Hassell, D.: A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155, 1–18 (2009)

    Article  CAS  Google Scholar 

  43. Shi, X., Leong, K., Ng, Y.: Anaerobic treatment of pharmaceutical wastewater: a critical review. Biores. Technol. 245, 1238–1244 (2017)

    Article  CAS  Google Scholar 

  44. Chen, Z., Ren, N., Wang, A., Zhang, P.: A novel application of TPAD–MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Res. 42, 3385–3392 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Chelliapan, S., Wilby, T., Sallis, P.: Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res. 40, 507–516 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Aydin, S., Ince, B., Cetecioglu, Z., Ozbayram, G.: Performance of anaerobic sequencing batch reactor in the treatment of pharmaceutical wastewater containing erythromycin and sulfamethoxazole mixture. Water Sci. Technol. 70, 1625–1632 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Z., Wang, H., Ren, N., Cui, M.: Simultaneous removal and evaluation of organic substrates and NH 3-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater. J. Hazard. Mater. 197, 49–59 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Kaya, Y., Murat, A., Hasar, H., Yilmaz, G.: Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem. Eng. J. 322, 293–301 (2017)

    Article  CAS  Google Scholar 

  49. Aydin, S.: Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 100, 6491–6499 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Yanyan, L., Xia, S., Tan, J., Zeng, R.: Preparation of cross-linked graphene oxide on polyethersulfone membrane for pharmaceuticals and personal care products removal. Polymers (2020). https://doi.org/10.3390/polym12091921

    Article  Google Scholar 

  51. Lin, K., Pan, J., Chen, Y., Cheng, R.: Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 161, 231–240 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. Tang, L., Wang, J., Jia, C., Lv, G.: Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Appl. Catal. B Environ. 205, 587–596 (2017)

    Article  CAS  Google Scholar 

  53. Wenyu, Z., Sun, F., Zhou, Y., Ronn, G.: Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B 207, 93–102 (2017)

    Article  Google Scholar 

  54. Pastrana, M., Morales, S., Likodimos, V., Figueiredo, J.L.: Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal. B Enviroin. 123–124, 241–256 (2012)

    Article  Google Scholar 

  55. Morales, S., Pastrana, M., Figueiredo, J.L., Faria, J.L.: Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Surf. Sci. 25, 361–368 (2013)

    Article  Google Scholar 

  56. Khadgi, N., Li, Y., Upreti, A.R., Zhang, C.: Enhanced photocatalytic degradation of 17α-ethinylestradiol exhibited by multifunctional ZnFe2O4-Ag/rGO nanocomposite under visible light. Photochem. Photobiol. 92, 238–246 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Wan, Z., Wang, J.: Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J. Hazard. Mater. 324, 653–664 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Song, C., Li, X., Wang, L., Shi, W.: Fabrication, characterization and response surface method (RSM) optimization for tetracycline photodegration by Bi3.84W0.16O6.24-graphene oxide (BWO-GO). Scientific reports. https://doi.org/10.1038/srep37466

  59. Tang, Y., Liu, X., Ma, C., Zhou, M.: Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts. New J. Chem. 39, 5150–5160 (2015)

    Article  CAS  Google Scholar 

  60. Alicanoglu, P., Sponza, D.T.: Removal of ciprofloxacin antibiotic with nano graphene oxide magnetite composite: comparison of adsorption and photooxidation processes. Desalin. Water Treat. 63, 293–307 (2017)

    Article  CAS  Google Scholar 

  61. Zhu, Y., Xue, J., Xu, T., He, G., Chen, H.: Enhanced photocatalytic activity of magnetic core–shell Fe3O4@Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J. Mater. Sci. Mater. Electron. 28, 8519–8528 (2017)

    Article  CAS  Google Scholar 

  62. Anirudhan, T.S., Deepa, J.R., Nair, A.S.: Fabrication of chemically modified graphene oxide/nano hydroxyapatite composite for adsorption and subsequent photocatalytic degradation of aureomycine hydrochloride. J. Ind. Eng. Chem. 47, 415–430 (2017)

    Article  CAS  Google Scholar 

  63. Karthik, R., Vinoth, K., Chen, S., Karuppiah, C.: A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces 9, 6547–6559 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. Jain, K., Patel, A., Pardhi, P., Flora, S.: Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules (2021). https://doi.org/10.3390/molecules26061797

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garcia, B., Lourinho, G., Romano, P., Brito, D.: Photocatalytic degradation of swine wastewater on aqueous TiO2 suspensions: optimization and modeling via Box-Behnken design. Heliyon 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e03293

  66. Koe, W., Lee, J., Chong, W., Pang, Y.: An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27, 2522–2565 (2020)

    Article  CAS  Google Scholar 

  67. Rout, D., Jena, H.: Facile synthesis of novel Z-scheme GO-modified ternary composite as photocatalyst for enhanced degradation of bisphenol-A under sunlight. J. Taiwan Inst. Chem. Eng. (2023). https://doi.org/10.1016/J.JTICE.2023.104914

    Article  Google Scholar 

  68. Ren, X., Guo, M., Xue, L., Xu, L.: Photoelectrochemical performance and S-scheme mechanism of ternary GO/g-C3N4/TiO2 heterojunction photocatalyst for photocatalytic antibiosis and dye degradation under visible light. Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2023.157446

    Article  Google Scholar 

  69. Wang, W., Zhou, C., Yang, Y., Zeng, G.: Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further? Chem. Eng. J. (2021). https://doi.org/10.1016/J.CEJ.2020.126540

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huang, Q., Liu, J., Qi, F., Pu, Y.: Highly stable lead-free Cs2AgBiI6-GO composite photocatalysts for efficient organic pollutant degradation. J. Environ. Chem. Eng. (2023). https://doi.org/10.1016/J.JECE.2023.109960

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lu, K., Li, Y., Tang, R., Xu, Y.: Roles of graphene oxide in heterogeneous photocatalysis. ACS Mater. Au (2021). https://doi.org/10.1021/acsmaterialsau.1c00022

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chua, K., Pumera, M.: Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. Moon, K., Lee, J., Ruoff, R., Lee, H.: Reduced graphene oxide by chemical graphitization. Nat. Commun. (2010). https://doi.org/10.1038/ncomms1067

    Article  PubMed  Google Scholar 

  74. Stankovich, S., Dikin, D., Dommett, G., Kohlhaas, K.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  PubMed  Google Scholar 

  75. De, S., Huang, H., Joshi, R., Yoshimura, M.: Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Article  Google Scholar 

  76. Dong, S., Li, Y., Sun, J., Sun, J.: Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole. Mater. Chem. Phys. 145, 357–365 (2014)

    Article  CAS  Google Scholar 

  77. Bashiri, F., Khezri, M., Kalantary, R., Kakavandi, B.: Enhanced photocatalytic degradation of metronidazole by TiO2 decorated on magnetic reduced graphene oxide: characterization, optimization and reaction mechanism studies. J. Mol. Liq. (2020). https://doi.org/10.1016/J.MOLLIQ.2020.113608

    Article  Google Scholar 

  78. El-Maraghy, C., El-Borady, M., El-Naem, A.: Effective removal of levofloxacin from pharmaceutical wastewater using synthesized zinc oxide, graphene oxide nanoparticles compared with their combination. Scitific Reports (2020). https://doi.org/10.1038/S41598-020-61742-4

    Article  Google Scholar 

  79. Wang, J., Zang, L., Wang, L., Tian, Y.: Magnetic cobalt ferrite/reduced graphene oxide (CF/rGO) porous balls for efficient photocatalytic degradation of oxytetracycline. J. Environ. Chem. Eng. (2022). https://doi.org/10.1016/J.JECE.2022.108259

    Article  PubMed  PubMed Central  Google Scholar 

  80. Qureshi, K., Ahmad, M., Bhatti, A., Zahid, M.: Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation. J. Mol. Liq. 285, 778–789 (2019)

    Article  CAS  Google Scholar 

  81. Bateni, A., Valizadeh, K., Salahshour, Y., Behroozi, H.: Fabrication and characterization of pectin-graphene oxide-magnesium ferrite-zinc oxide nanocomposite for photocatalytic degradation of diclofenac in an aqueous solution under visible light irradiation. J. Environ. Manage. (2022). https://doi.org/10.1016/j.jen-vman.2022.116358

    Article  PubMed  Google Scholar 

  82. Görmez, O., Yakar, E., Gözmen, B., Kayan, B.: CoFe2O4 nanoparticles decorated onto graphene oxide and graphitic carbon nitride layers as a separable catalyst for ultrasound-assisted photocatalytic degradation of Bisphenol-A. Chemosphere (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.132663

    Article  PubMed  Google Scholar 

  83. Soltani, T., Tayyebi, A., Lee, B.: Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J. Environ. Manage. (2019). https://doi.org/10.1016/J.JENVMAN.2018.11.133

    Article  PubMed  Google Scholar 

  84. Hu, Y., Yang, Y., Zhang, J., Jin, S.: Efficient adsorption and full spectrum photocatalytic degradation of low concentration PPCPs promoted by graphene/TiO2 nanowires hybrid structure in 3D hydrogel networks. RSC Adv. 10, 27050–27057 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sayadi, H., Sobhani, S., Shekari, H.: Photocatalytic degradation of azithromycin using GO@Fe3O4/ ZnO/ SnO2 nanocomposites. J. Clean. Prod. 232, 127–136 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Soonmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soonmin, H., Lau, S.Y., Zahir, A., Chakrabortty, S., Jacob, A.O. (2024). A Comprehensive Review of Recent Progress on the Removal of Pharmaceutical Compounds. In: Jung, DW. (eds) Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing. ICMMPM 2023. Springer Proceedings in Materials, vol 44. Springer, Singapore. https://doi.org/10.1007/978-981-97-1594-7_13

Download citation

Publish with us

Policies and ethics