Skip to main content

Review on Current Research of Fabrication, Properties and Applications in Zeolite

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing (ICMMPM 2023)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 44))

Included in the following conference series:

  • 58 Accesses

Abstract

Zeolites consisted of aluminum ion and silicon ion, surrounded by oxygen anions. These materials could be categorized into natural zeolite and synthetic zeolite, respectively. The uses of zeolites include ion exchanger, agricultural, catalysis, adsorption process and water purification. Formation of zeolite could be carried out using solvothermal, ionothermal synthesis method, microwave-assisted method, and hydrothermal. The quality of the obtained zeolites depends on experimental conditions such as pH, adsorbent dosage, contact time, composition of precursors, and temperature. Characterization of zeolite has been studied using x-ray diffraction technique, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray fluorescence spectroscopy, and scanning electron microscopy technique. Surface properties, pore size distribution, thermal stability, acidic/alkaline behaviors, mobile cation, and pore size have been reported based on the literature review. In this work, the adsorption of heavy metal, carbon dioxide gas, dye and phenolic compounds onto natural and modified zeolite has been investigated. Sometimes, cobalt, copper, iron, and sodium were used to modify the zeolite surface. The adsorption data was investigated using Langmuir, Temkin, Freundlich isotherm models. Kinetic study was studied using pseudo first-order and pseudo second-order models. The adsorption process was spontaneous (negative Gibbs free energy), exothermic (negative enthalpy) and randomness of the system decreases (negative entropy) based on the thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veronique, V., Karen, H., Catlow, C., Bell, G.: Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015)

    Article  Google Scholar 

  2. El-Sayed, D.: Electronic band structure and density of state modulation of amphetamine and ABW type–zeolite adsorption system: DFT-CASTEP analysis. J. Mol. Model. (2023). https://doi.org/10.1007/s00894-023-05501-y

    Article  PubMed  Google Scholar 

  3. Ersin, P., Mehmet, K., Naci, A., Halil, D.: Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. Plant Res. 12, 183–189 (2004)

    Google Scholar 

  4. Lim, C.K., Seow, T.W., Neoh, C.: Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. 3 Biotech (2016). https://doi.org/10.1007/s13205-016-0513-8

  5. Broclawik, E., Kozyra, P., Mitoraj, M., Rado, M., Rejmak, P.: Zeolites at the molecular level: what can be learned from molecular modeling. Molecules (2021). https://doi.org/10.3390/molecules26061511

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abolpour, B., Sheibani, S., Eskandari, A.: Modeling the influent and effluent parameters concentrations of the industrial wastewater treatment under zeolite filtration. Appl. Soft Comput. 27, 5855–5872 (2023)

    Article  Google Scholar 

  7. Koltsakidis, S., Koidi, V., Lappas, A.: Influence of binder concentration in zeolitic ZSM-5/bentonite 3D-printed monoliths manufactured through robocasting for catalytic applications. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-11091-z

    Article  Google Scholar 

  8. Rostamizadeh, M., Rahmani, M.S., Galli, F.: Fast and efficient dye elimination over one-pot synthesized and Si-Rich [Fe]-ZSM-5 catalyst in electro-Fenton process. Electrocatalysis 14, 463–472 (2023)

    Article  CAS  Google Scholar 

  9. Duplouy, L., Hureau, M., Moncomble, A.: Ultrafast formation of exciplex species in dicyanoanthracene ZSM-5 revealed by transient emission and vibrational spectroscopy. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-00813-9

    Article  Google Scholar 

  10. Ho, S.M., Nik, A., Haruna, O., Peter, A.: Zeolites: Synthesis, Characterisation & Practice. Ideal International E- Publication, India (2017)

    Google Scholar 

  11. Eun, A., Kim, T., Min, K., Kim, C.: Synthesis of mesoporous SAPO-34 zeolite from mesoporous silica materials from methanol to light olefins. J. Nanosci. Nanotechnol. 13, 7498–7503 (2013)

    Article  Google Scholar 

  12. Gao, S., Peng, H., Bing, S., Wu, W.: Synthesis of zeolites from low-cost feeds and its sustainable environmental applications. J. Environ. Chem. Eng. (2023). https://doi.org/10.1016/j.jece.2022.108995

    Article  Google Scholar 

  13. Derbe, T., Taju, S., Enyew, A., Girma, T.: Mini review on synthesis, characterization, and application of zeolite@MOF composite. Adv. Mater. Sci. Eng. (2023). https://doi.org/10.1155/2023/8760967

    Article  Google Scholar 

  14. Siriporn, K., Edwin, B., Sajjad, G., Sosa, N.: Application of a BPH zeolite for the transesterification of glycerol-to-glycerol carbonate: effect of morphology, cation type and reaction conditions. Inorg. Chem. Front. 10, 579–590 (2023)

    Article  Google Scholar 

  15. Deshpande, S., Kheur, S., Kheur, M.: A review on zeolites and their applications in dentistry. Curr. Oral Health Rep. (2023). https://doi.org/10.1007/s40496-023-00330-7

    Article  Google Scholar 

  16. Mana, S., Marlia, M., Khan, J.: Environmental characteristics of clay and clay-based minerals. Geol. Ecol. Landsc. 1, 155–161 (2017)

    Google Scholar 

  17. Maryam, M.: Bentonite clay as a natural remedy: a brief review. Iran. J. Public Health 46, 1176–1183 (2017)

    Google Scholar 

  18. Fowler, J., Li, W., Bailey, C.: Effects of a calcium bentonite clay in diets containing aflatoxin when measuring liver residues of aflatoxin B(1) in starter broiler chicks. Toxins (Basel) 7, 3455–3464 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Amir, F., Muhd, F., Ahmad, B.: Study of fly ash characterization as a cementitious material. Procedia Eng. 148, 487–493 (2016)

    Article  Google Scholar 

  20. Seham, S., Marei, H.: Fly ash properties, characterization and application; a review. J. King Saud Univ.-Sci. (2021). https://doi.org/10.1016/j.jksus.2021.101536

    Article  Google Scholar 

  21. https://www.zeolyst.com/about-us/manufacturing.html. Accessed 16 Aug 2023

  22. https://www.clariant.com/en/Solutions/Products/2022/09/06/09/02/SAPO11-Zeolite-AEL. Accessed 16 Aug 2023

  23. https://www.kmizeolite.com/. Accessed 16 Aug 2023

  24. https://www.zeocem.com/en/produkty/enviro/zeotraction-ultra. Accessed 16 Aug 2023

  25. http://www.xmzeolite.com/en/products/3A-Molecular-Sieve-Powder-Series.html. Accessed 16 Aug 2023

  26. https://grace.com/industries/general-industrial/process-adsorbents/. Accessed 16 Aug 2023

  27. https://www.resonac.com/corporate/network/group/uskk.html. Accessed 16 Aug 2023

  28. https://www.tosoh.com/our-products/advanced-materials/zeolites-for-molecular-sieves. Accessed 16 Aug 2023

  29. https://www.cwk-bk.de/de/produkte/molekularsiebe/zeolithe. Accessed 16 Aug 2023

  30. Kramer, G., Santen, R., Emeis, C.: Understanding the acid behavior of zeolites from theory and experiment. Nature 363, 529–531 (1993)

    Article  CAS  Google Scholar 

  31. Amir, I., Rahat, J., Fei, Q., Umair, Y.: Application of attapulgite clay-based Fe-Zeolite 5A in UV-assisted catalytic ozonation for the removal of ciprofloxacin. J. Chem. (2022). https://doi.org/10.1155/2022/2846453

    Article  Google Scholar 

  32. Endar, H., Seiichiro, Y., Yoshiharu, M., Hiroyuki, H.: Methylene blue removal by chitosan cross-linked zeolite from aqueous solution and other ion effects: isotherm, kinetic, and desorption studies. Adsorpt. Sci. Technol. (2022). https://doi.org/10.1155/2022/1853758

    Article  Google Scholar 

  33. Denise, A., Mariza, B., Lucas, C.: Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash. Desalin. Water Treat. 2, 231–239 (2009)

    Article  Google Scholar 

  34. Shaban, M., Suzan, I., Shahien, M.: Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ. Chem. Lett. (2017). https://doi.org/10.1007/s10311-017-0658-7

    Article  Google Scholar 

  35. Nur-E-Alam, M., Mia, M., Ahmad, F.: An overview of chromium removal techniques from tannery effluent. Appl. Water. Sci. (2020). https://doi.org/10.1007/s13201-020-01286-0

    Article  Google Scholar 

  36. Asanu, M., Dejene, B., Adisu, B.: Removal of hexavalent chromium from aqueous solutions using natural zeolite coated with magnetic nanoparticles: optimization, kinetics, and equilibrium studies. Adsorpt. Sci. Technol. (2022). https://doi.org/10.1155/2022/8625489

    Article  Google Scholar 

  37. Elena, I., Andrea, M., Gonzalez, M.: Trivalent chromium ion removal from aqueous solutions using low-cost zeolitic materials obtained from exhausted FCC catalysts. Adsorpt. Sci. Technol. 29, 629–636 (2011)

    Article  Google Scholar 

  38. Deyi, W., Sui, Y., He, S., Li, C.: Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J. Hazard. Mater. 155, 415–423 (2008)

    Article  Google Scholar 

  39. Shaker, O.A., Safwat, S.M., Matta, M.E.: Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 30, 26650–26662 (2023)

    Article  CAS  Google Scholar 

  40. Panneerselvam, P., Sathya, V., Sivanesan, S.: Removal of nickel (II) from aqueous solutions by adsorption with modified ZSM- 5 zeolites. E-J. Chem. 6, 729–736 (2009)

    Article  CAS  Google Scholar 

  41. Ahmad, A., Ribhi, E.: Removal of lead and nickel ions using zeolite tuff. J. Chem. Technol. Biotechnol. 69, 27–34 (1997)

    Article  Google Scholar 

  42. Reyad, A., Aiman, E.: Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J. Univ. Chem. Technol. Metall. 47, 69–76 (2012)

    Google Scholar 

  43. Lidia, B., Małgorzata, F., Jarosław, M., Dorota, K.: Zeolites in phenol removal in the presence of Cu(II) ions—comparison of sorption properties after chitosan modification. Materials (2020). https://doi.org/10.3390/ma13030643

    Article  Google Scholar 

  44. Ucan, C., Abatal, M., Miguel, A., Denis, C.: Removal of an ethoxylated alkylphenol by adsorption on zeolites and photocatalysis with TiO2/Ag. Processes (2019). https://doi.org/10.3390/pr7120889

    Article  Google Scholar 

  45. Imessaoudene, A., Cheikh, S., Bollinger, J., Belkhiri, L.: Zeolite waste characterization and use as low-cost, ecofriendly, and sustainable material for malachite green and methylene blue dyes removal: Box-Behnken design, kinetics, and thermodynamics. Appl. Sci. (2022). https://doi.org/10.3390/app12157587

    Article  Google Scholar 

  46. Radoor, S., Nandi, D., Suchart, S.: Efficient removal of organic dye from aqueous solution using hierarchical zeolite-based biomembrane: isotherm, kinetics, thermodynamics and recycling studies. Catalysts (2022). https://doi.org/10.3390/catal12080886

    Article  Google Scholar 

  47. Asmaa, R., Hamd, A., Ahmed, A., Abu, A.: Design, characterization, and adsorption properties of Padina gymnospora/zeolite nanocomposite for Congo red dye removal from wastewater. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-00025-y

    Article  Google Scholar 

  48. Hidayat, E., Harada, H., Mitoma, Y., Yonemura, S.: Rapid removal of acid red 88 by zeolite/chitosan hydrogel in aqueous solution. Polymers (2022). https://doi.org/10.3390/polym14050893

  49. Ocean, C., Zoltan, B., Fil, N., Niklas, H.: Selective adsorption of CO2 on zeolites NaK-ZK-4 with Si/Al of 1.8–2.8. ACS Omega 5, 25371–25380 (2020)

    Google Scholar 

  50. Ranjani, V., Shen, M., Edward, P., Losch, J.: Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19, 1153–1159 (2005)

    Article  Google Scholar 

  51. Robert, W., Logan, J., Ranjani, V.: In situ fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy Fuels 22, 3070–3079 (2008)

    Article  Google Scholar 

  52. Jadhav, P., Chatti, V., Rayalu, S., Devotta, S.: Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21, 3555–3559 (2007)

    Article  CAS  Google Scholar 

  53. Elena, D.: Evaluation of behavior of 13X zeolite modified with transition metals for catalytic applications. Bioinorg. Chem. Appl. (2022). https://doi.org/10.1155/2022/7352074

    Article  Google Scholar 

  54. Samhan, M., Fadhli, J., Otaibi, A., Bouresli, R.: Synthesis of micromesoporous zeolite-alumina catalysts for olefin production from heavy crude oil. Int. J. Chem. Eng. (2023). https://doi.org/10.1155/2023/7302409

    Article  Google Scholar 

  55. Aghaei, E., Rizi, Z.T., Zangeneh, F.: Methanol to highly aromatic gasoline production over CuO-ZnO/HZSM-5 catalyst prepared by ultrasound-assisted co-impregnation. Chem. Pap. 77, 2469–2482 (2023)

    Article  CAS  Google Scholar 

  56. Soares, T., Reis, A., Santos, J.: NaY-Ag zeolite chitosan coating kraft paper applied as ethylene scavenger packaging. Food Bioprocess Technol. 16, 1101–1115 (2023)

    Article  CAS  Google Scholar 

  57. Shindo, S., Takata, S., Taguchi, H.: Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotech. Lett. 23, 2001–2004 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Soonmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soonmin, H. (2024). Review on Current Research of Fabrication, Properties and Applications in Zeolite. In: Jung, DW. (eds) Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing. ICMMPM 2023. Springer Proceedings in Materials, vol 44. Springer, Singapore. https://doi.org/10.1007/978-981-97-1594-7_12

Download citation

Publish with us

Policies and ethics