Skip to main content

Recent Advances in the Development of Pulsed Laser Deposited Thin Films

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing (ICMMPM 2023)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 44))

Included in the following conference series:

  • 48 Accesses

Abstract

The technique known as pulsed laser deposition is a popular approach to depositing thin material films onto a substrate. Using a high-powered laser to vaporize a target material, and then depositing it onto a substrate is the process employed to create a thin film. The mechanism of pulsed laser deposition is based on the principle of laser induced ablation. In this work, preparation and development of pulsed laser deposited films were reported. Deposition of nanostructured films onto different substrates such as InP(111), silicon, stainless steel, strontium titanate, Single crystal sapphire, quartz, plastic foil, molybdenum coated glass, yittria stabilized zirconia substrate, aluminum oxide substrate, polyimide, Corning glass, MgO substrate, and single crystal SrTiO3 substrates. The produced films could be used in many applications including projection television, diode lasers, thermometry, fluorescence microscopy, optoelectronic devices, rechargeable lithium battery, phase-change materials in memory application, quantum dot and plasmonics applications. In addition, experimental results showed that prepared films could be used as absorber materials of solar cell applications due to appropriate band gap value, excellent adsorption coefficient, and cheaper materials costs. Researchers have pointed out the growth rate, desired structural, electrical, compositional and the optical properties could be controlled using different deposition parameters during the preparation of films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pham, S., Luan, T., Ha, T., Viet, N.: Long-term stability electrochromic electrodes based on porous tungsten trioxide and nickel oxide films via a facile triple pulse electro deposition. Ceramic Int. 49, 33413–33417 (2023)

    Article  CAS  Google Scholar 

  2. Hina, N., Amna, A., Zohra, N., Razi, A.: Molarity-dependent structural, dielectric, magnetic, and morphological behavior of manganese iron oxide thin films by electrodeposition. Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.128222

  3. Mengbo, L., Li, F., Gao, J., Bu, L.: Study on the electrodeposition of Bi2Te3 thin film thermoelectric material in dimethyl sulfoxide. Int. J. Electrochem. Sci. (2023). https://doi.org/10.1016/j.ijoes.2023.100306

    Article  Google Scholar 

  4. Ikhioya, L., Ijabor, B., Whyte, G., Ezema, F.: Synthesis and characterization of aluminium sulphide (Al2S3) thin films. Chem. Methodol. 3, 651–662 (2019)

    Google Scholar 

  5. Al-Bathi, M.: Electrodeposition of nanostructure materials. In: Mahmood, A. (ed.) Electroplating of Nanostructures. Intech Open, Croatia (2015). https://doi.org/10.5772/61389

  6. Armel, I., Mari, S., Amal, B., Soro, D.: Growth of copper indium diselenide ternary thin films (CuInSe2) for solar cells: optimization of electrodeposition potential and pH parameters. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e19057

    Article  PubMed  PubMed Central  Google Scholar 

  7. Feng, M., Rui, F., Pan, Y., Li, R.: Preparation of Si thin films on copper foil using pulse current electrodeposition. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2022.132793

    Article  Google Scholar 

  8. Ho, S.M.: A brief review of the growth of pulsed laser deposition thin films. Br. J. Appl. Sci. Technol. 14, 1–6 (2016)

    Article  Google Scholar 

  9. Sugavaneshwar, R., Satoshi, I., Dao, D., Ohi, A.: Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications. ACS Photonics 5, 814–819 (2018)

    Article  CAS  Google Scholar 

  10. Viespe, C., Dinca, V., Pelin, G., Miu, D.: Love wave surface acoustic wave sensor with laser-deposited nanoporous gold sensitive layer. Sensors (2019). https://doi.org/10.3390/s19204492

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rabo, J., Makoto, T., Kazuya, T., Hideki, N.: Effects of oxygen partial pressure and substrate temperature on the structure and morphology of Sc and Y co-doped ZrO2 solid electrolyte thin films prepared via Pulsed Laser Deposition. Materials (2022). https://doi.org/10.3390/ma15020410

    Article  PubMed  PubMed Central  Google Scholar 

  12. Teghil, R., Curcio, M., Bonis, A.: Substituted hydroxyapatite, glass, and glass-ceramic thin films deposited by nanosecond pulsed laser deposition (PLD) for biomedical applications: a systematic review. Coatings (2021). https://doi.org/10.3390/coatings11070811

    Article  Google Scholar 

  13. Huang, F., Chen, X., Lei, B., He, T., Qi, L.: Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. Phys. Chem. Chem. Phys. 19, 3486–3497 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Haider, A.J., Alawsi, T., Haider, M.J.: A comprehensive review on pulsed laser deposition technique to effective nanostructure production: trends and challenges. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-03786-6

    Article  Google Scholar 

  15. Ojeda, G., Döbeli, M., Lippert, T.: Influence of plume properties on thin film composition in pulsed laser deposition. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/admi.201701062

    Article  Google Scholar 

  16. Ma, C., Chen, C.: Pulsed laser deposition for complex oxide thin film and nanostructure. In: Yuan, L., Xin, C. (eds.) Advanced Nano Deposition Methods. Chemical Industry Press, China (2016). https://doi.org/10.1002/9783527696406.ch1

  17. Orvis, T., Harish, K., Austin, C., Jayakanth, R.: In situ monitoring of composition and sensitivity to growth parameters of pulsed laser deposition. ACS Appl. Electron. Mater. 3, 1422–1428 (2021)

    Article  CAS  Google Scholar 

  18. Mostafa, A., Menazea, A.: Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.109020

    Article  Google Scholar 

  19. Alhajj, M., Aziz, M., Salim, A.: Customization of structure, morphology and optical characteristics of silver and copper nanoparticles: role of laser fluence tuning. Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2022.156176

    Article  Google Scholar 

  20. Ho, S.M.: A review of metal oxide thin films in solar cell applications. Int. J. Thin Film Sci. Technol. 11, 37–45 (2022)

    Article  Google Scholar 

  21. Jamkhande, P.G., Ghule, N., Abdul, H., Mohan, G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. (2019). https://doi.org/10.1016/j.jddst.2019.101174

    Article  Google Scholar 

  22. Bao, Q., Lei, T., Wang, D., Ji, Q.: Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl. Surf. Sci. 252, 1538–1544 (2005)

    Article  CAS  Google Scholar 

  23. Lowndes, D.H., Rouleau, M., Norton, P., Puretzky, A.: Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Le, T., Jian, S., Le, P.: Effects of stoichiometry on structural, morphological and nanomechanical properties of Bi2Se3 thin films deposited on InP(111) substrates by pulsed laser deposition. Coatings (2020). https://doi.org/10.3390/coatings10100958

  25. Albarkaty, K.S., Kumi-Barimah, E., Zhang, J., Yang, Z., Jose, G.: Femtosecond laser deposition of germanium selenide onto silicon platform at different substrate temperatures. Nanomaterials (2022). https://doi.org/10.3390/nano12122003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dewan, S., Das, S., Muduli, K., Singh, R.: Large-area GeSe realized using pulsed laser deposition for ultralow-noise and ultrafast broadband phototransistors. ACS Appl. Mater. Interfaces. 15, 27285–27298 (2023)

    Article  CAS  PubMed  Google Scholar 

  27. Elisa, M., Iordache, S.M., Iordache, A.M.: Pulsed laser deposition films based on CdSe-doped zinc aluminophosphate glass. JOM 73, 495–503 (2021)

    Article  CAS  Google Scholar 

  28. Ke, Y., Bing, L., Zeng, G.: Structural, morphological, compositional, optical and electrical properties of Sb2Se3 thin films deposited by pulsed laser deposition. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.10661

    Article  Google Scholar 

  29. Bing, L., Yang, K., Zeng, G.: Sb2Se3 thin film solar cells prepared by pulsed laser deposition. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153505

    Article  Google Scholar 

  30. Jain, A.K., Gopalakrishnan, C., Malar, P.: Study of pulsed laser deposited antimony selenide thin films. J. Mater. Sci. Mater. Electron. 33, 10430–10438 (2022)

    Article  CAS  Google Scholar 

  31. Khaled, Y., Habe, S., Amar, H.: Preparation and characterization of PLD deposited Indium Selenide thin film. Eng. Technol. J. (2014). https://doi.org/10.30684/etj.32.2B.9

  32. Hadallia, B., Hersam, C., Chi, Z., Guo, S.: Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Appl. Phys. Rev. (2020). https://doi.org/10.1063/5.0023080

    Article  Google Scholar 

  33. Aiai, W., Li, Z., Wang, S., Yang, X.: High thermoelectric performance of Cu2Se-based thin films with adjustable element ratios by pulsed laser deposition. Mater. Today Energy (2022). https://doi.org/10.1016/j.mtener.2021.100929

    Article  Google Scholar 

  34. Lina, Z., Li, Q., Zhang, R., Zhang, Q.: Preparation of (111)c-oriented Cu2Se films by pulsed laser deposition method. Thin Solid Films (2022). https://doi.org/10.1016/j.tsf.2021.139024

    Article  Google Scholar 

  35. Nadheer, J., Hala, A.: Effect of laser fluence on structural transformations and photoluminescence quenching of zinc selenide nanoparticles thin films. Al-Mustansiriyah J. Sci. (2018). https://doi.org/10.23851/mjs.v29i4.441

  36. Xue, M., Fu, Z.: Fabrication and electrochemical characterization of zinc selenide thin film by pulsed laser deposition. Electrochim. Acta 52, 988–995 (2006)

    Article  CAS  Google Scholar 

  37. Salman, A., Hossain, M., Ahmed, A., Fahhad, H.: PLD grown polycrystalline tungsten disulphide (WS2) films. J. Mater. (2013). https://doi.org/10.1155/2013/603648

    Article  Google Scholar 

  38. Prasad, S., McDevitt, T., Zabinski, S.: Friction behavior of pulsed laser deposited tungsten disulfide films. Tribol. Trans. 38, 57–62 (1995)

    Article  CAS  Google Scholar 

  39. Kun, T., Tiwari, A., Baskaran, K.: Growth of two-dimensional WS2 thin films by pulsed laser deposition technique. Thin Solid Films 668, 69–73 (2018)

    Article  Google Scholar 

  40. Zabinski, J.S., Donley, M.S., Prasad, S.V.: Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition. J. Mater. Sci. 29, 4834–4839 (1994)

    Article  CAS  Google Scholar 

  41. Gadalla, A., Al-shamiri, H., Alshahrani, S., Khalil, H.: Epitaxial growth and optical properties of laser deposited CdS thin films. Coatings (2022). https://doi.org/10.3390/coatings12010087

    Article  Google Scholar 

  42. Yasmeen, Z.: The influence of substrate temperature on CdS thin films properties prepared by pulse laser deposition on glass substrate. Energy Procedia 119, 536–544 (2017)

    Article  Google Scholar 

  43. Acharya, K., Skuza, R., Lukaszew, A.: CdS thin films formed on flexible plastic substrates by pulsed-laser deposition. J. Phys. Condens. Matter. (2007). https://doi.org/10.1088/09538984/19/19/196221

    Article  Google Scholar 

  44. Wang, Y., Li, J., Xue, C.: Fabrication of Cu2SnS3 thin-film solar cells with oxide precursor by pulsed laser deposition. J. Mater. Sci. 52, 6225–6234 (2017)

    Article  CAS  Google Scholar 

  45. Vanalakar, S., Kamble, A., Patil, P., Kim, H.: Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 138, 1–8 (2015)

    Article  CAS  Google Scholar 

  46. Arun, B., Nisha, P., Biswarup, S., Shib, S.: Emerging photoluminescence from bilayer large area 2D MoS2 films grown by pulsed laser deposition on different substrates. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4991490

    Article  Google Scholar 

  47. Gene, S., Megan, C., Tiwari, A.: Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition. APL Mater. (2015). https://doi.org/10.1063/1.4921580

    Article  Google Scholar 

  48. Lei, J., Wang, Y., Jie, W., Wu, Z.: Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition. Adv. Condens. Matter Phys. (2018). https://doi.org/10.1155/2018/3485380

  49. Gujar, T.P., Shinde, V.R., Katiyar, R.S.: Characterization of pulsed laser deposited Cu2ZnSnS4 thin films for Solar cell. MRS Online Proc. Libr. (2012). https://doi.org/10.1557/opl.2012.1165

    Article  Google Scholar 

  50. Lin, S., He, J., Chen, Y., Yue, F.: Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target. J. Cryst. Growth 361, 147–151 (2012)

    Article  Google Scholar 

  51. Zakaria, O., Rajesh, P., Ali, E.: Pulsed laser deposition of CZTS thin films, their thermal annealing and integration into n-Si/CZTS photovoltaic devices. In: 2016 International renewable and Sustainable Energy Conference, Marrakech, Morocco, 14–17 November 2016. https://doi.org/10.1109/IRSEC.2016.7983988

  52. Moholkar, A., Patil, S., Kim, J., Sim, K.: Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Sol. Energy 85, 1354–1363 (2011)

    Article  CAS  Google Scholar 

  53. Hidenori, H., Ohta, H., Hirano, M.: Heteroepitaxial growth of single-phase zinc blende ZnS films on transparent substrates by pulsed laser deposition under H2S atmosphere. Solid State Commun. 124, 411–415 (2002)

    Article  Google Scholar 

  54. Chernikov, A., Kochuev, D., Egorova, A.: Synthesis of spherical zinc sulfide nanoparticles produced by femtosecond laser ablation and deposited on a silicon substrate under the action of an electrostatic field. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/2077/1/012002

    Article  Google Scholar 

  55. Huiping, C., Juang, J., Chung, Y., Teng, I.: Effects of substrate temperature on nanomechanical properties of pulsed laser deposited Bi2Te3 films. Coatings (2022). https://doi.org/10.3390/coatings12060871

    Article  Google Scholar 

  56. Matthieu, A., Saniya, L., Carter, M.: Pulsed laser melting of bismuth telluride thermoelectric materials. J. Manuf. Process. 43, 35–46 (2019)

    Article  Google Scholar 

  57. Jiyang, L., Liu, X., Li, W., Lu, H.: Preparation and characterization of pulsed laser deposited Sb2Te3 back contact for CdTe thin film solar cell. Appl. Surf. Sci. 453, 126–131 (2018)

    Article  Google Scholar 

  58. Biswajit, S., Pragati, C., Anil, K., Saha, D.: Pulsed laser deposition of highly oriented stoichiometric thin films of topological insulator Sb2Te3. J. Vac. Sci. Technol. B 34 (2016). https://doi.org/10.1116/1.4943026

  59. Tverjanovich, A., Benmore, C., Khomenko, M., Sokolov, A.: Decoding the atomic structure of Ga2Te5 pulsed laser deposition films for memory applications using diffraction and first-principles simulations. Nanomaterials (2023). https://doi.org/10.3390/nano13142137

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shupenev, A., Melnik, S., Korshunov, I., Karpoukhin, S.: Growth features of Bi2Te3Sb1.5 films on polyimide substrates obtained by pulsed laser deposition. Materials (2022). https://doi.org/10.3390/ma15248993

  61. Shupenev, A., Korshunov, I., Grigoryants, A.: On the pulsed-laser deposition of bismuth-telluride thin films on polyimide substrates. Semiconductors (2020). https://doi.org/10.1134/S1063782620030173

  62. Pandey, K., Umesh, T., Raman, R.: Growth of cubic and hexagonal CdTe thin films by pulsed laser deposition. Thin Solid Films 473, 54–57 (2005)

    Article  CAS  Google Scholar 

  63. Flores, F., Galvan, G., Salazar, J., Cruz, S.: CdTe thin films grown by pulsed laser deposition using powder as target: effect of substrate temperature. J. Cryst. Growth 386, 27–31 (2014)

    Article  Google Scholar 

  64. Hussain, S., Pal, K., Bhar, R.: Studies on CdTe films deposited by pulsed laser deposition technique. Physica B 407, 4214–4220 (2012)

    Article  Google Scholar 

  65. Ulrich, R., Erik, T., Bernd, R.: Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films. J. Alloy. Compd. 676, 582–590 (2016)

    Article  Google Scholar 

  66. Bulai, G., Focsa, C., Petr, N., Oana, P.: Ge-Sb-Te chalcogenide thin films deposited by nanosecond, picosecond, and femtosecond laser ablation. Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9050676

    Article  PubMed  Google Scholar 

  67. Moure, F., Torres, M., Lira, M., Galvan, G.: Copper telluride thin films grown by pulsed laser deposition. Surf. Coat. Technol. 217, 181–183 (2013)

    Article  Google Scholar 

  68. Bodnar, V., Victorov, A., Gremenok, F.: Characterization of CuInTe2 thin films prepared by pulsed laser deposition. Mater. Lett. 35, 130–134 (1998)

    Article  Google Scholar 

  69. Bellucci, A., Orlando, S., Medici, L., Lettino, A.: Nanostructured thermoelectric PbTe thin films with Ag addition deposited by femtosecond pulsed laser ablation. Energies (2023). https://doi.org/10.3390/en16073216

  70. Pal, K., Bhar, R., Hussain, S.: Growth of ZnTe films by pulsed laser deposition technique. J. Alloy. Compd. 541, 104–110 (2012)

    Article  Google Scholar 

  71. Erlacher, A., Perna, G., Jaeger, H., Ambrico, M.: Absorption and photoconductivity properties of ZnTe thin films formed by pulsed-laser deposition on glass. Appl. Surf. Sci. 248, 402–405 (2005)

    Article  CAS  Google Scholar 

  72. Artur, E., Jaeger, H., Bruno, U.: Structural and surface analysis of thin-film ZnTe formed with pulsed-laser deposition. Surf. Sci. 600, 3762–3765 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Soonmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soonmin, H., Alhajj, M., Tubtimtae, A. (2024). Recent Advances in the Development of Pulsed Laser Deposited Thin Films. In: Jung, DW. (eds) Proceedings of the 5th International Conference on Metal Material Processes and Manufacturing. ICMMPM 2023. Springer Proceedings in Materials, vol 44. Springer, Singapore. https://doi.org/10.1007/978-981-97-1594-7_11

Download citation

Publish with us

Policies and ethics