Skip to main content

CC1101 Network for Healthcare Cyber Physical System on Air Quality Data Acquisition

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Electronics, Biomedical Engineering, and Health Informatics (ICEBEHI 2023)

Abstract

There is currently no dedicated network for IoT needs on the Siliwangi University campus, IoT device data communication still relies on the wifi network for internet network needs, which means that the quality of data transmission will be compromised if the network is overloaded with internet users. Siliwangi University needs a suitable, practical, and good network so that it can be used as a data communication line by the installed IoT devices. The viability of setting up an interconnection network on the Siliwangi University campus needs to be examined. In this study, the effectiveness of the CC1101 network used by Siliwangi University to monitor air quality via the Internet of Things was evaluated. The system consists of two components: nodes and gateways. The nodes use Arduino Nano microcontroller boards to transmit air quality data to the gateway, while the gateway uses a nodeMCU ESP8266 microcontroller board to transmit the data to the internet. According to the test findings for the CC1101 using the 433 MHz frequency, the most data that can be transferred is 64 bytes, and it can transmit data up to a distance of 68 m under line-of-sight conditions and 40 m under non-line-of-sight conditions. The data collected shows that there is an average data transmission delay of 859.698 ms and a packet loss of 3.12%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hidayat EW, Nursuwars FMS, Rahmatulloh Al (2017) Analisis service quality untuk mengukur tingkat kepuasan pengguna layanan tik di Universitas Siliwangi. In: Seminar Nasional Teknologi Informasi dan Multimedia. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/viewFile/1591/1583. Accessed 07 November 2022

  2. Nursuwars FMS (2018) API (application programing interface) Mikrotik untuk Otentifikasi Sistem Akademik Universitas Siliwangi. Jurnal Siliwangi Seri Sains dan Teknologi 4(2)

    Google Scholar 

  3. Low-Power Sub-1 GHz RF Transceiver and E “cc1101.” https://www.ti.com/lit/ds/symlink/cc1101.pdf. Accessed 07 November 2022

  4. Hiron N et al (2016) Batch processing method in machine to machine wireless communication as smart and intelligent system. Int J Future Comput Commun 5(3):163–166. https://doi.org/10.18178/ijfcc.2016.5.3.464

    Article  Google Scholar 

  5. Af’idah DI, Rochim AF, Widianto ED (2014) Perancangan Jaringan Sensor Nirkabel (JSN) untuk Memantau Suhu dan Kelembaban Menggunakan nRF24L01+. Jurnal Teknologi dan Sistem Komputer 2(4):267. https://doi.org/10.14710/jtsiskom.2.4.2014.267-276

  6. Hariyanto T, Rahayu M, Satria F, Fadhlan MY (2019) Improving temperature sensor accuracy in the IoT trainer kit by linear regression method. In: Proceedings of the 2019 international conference on mechatronics, robotics and systems engineering, MoRSE 2019. https://doi.org/10.1109/MoRSE48060.2019.8998639

  7. Fajar Wicaksono M (2017) Implementasi Modul Wifi Nodemcu Esp8266 Untuk Smart Home. Jurnal Teknik Komputer Unikom-Komputika 6(1)

    Google Scholar 

  8. Hayat MEAN, Nursuwars FMS, Aripin A (2022) Timbangan beras digital berbasis narrowband internet of things. J Energy Electr Eng (JEEE) 4(1)

    Google Scholar 

  9. Saptadi AH (2015) Perbandingan Akurasi Pengukuran Suhu dan Kelembaban Antara sensor DHT11 dan DHT22 Studi Komparatif pada platform ATMEL AVR dan Arduino. Jurnal Informatika, Telekomunikasi dan Elektronika 6(2). https://doi.org/10.20895/infotel.v6i2.73

  10. Althoubi A, Alshahrani R, Peyravi H (2021) Delay analysis in IoT sensor networks†. Sensors 21(11). https://doi.org/10.3390/s21113876

  11. Aljubayri M, Peng T, Shikh-Bahaei M (2021) Reduce delay of multipath TCP in IoT networks. Wirel Netw 27(6). https://doi.org/10.1007/s11276-021-02701-3

  12. Sankayya M, Kumar Sakthivel R, Gayathri N, Al-Turjman F (2023) Wireless sensor network–based delay minimization framework for IoT applications. Pers Ubiquitous Comput 27(3). https://doi.org/10.1007/s00779-020-01517-w

  13. Itahara S, Nishio T, Koda Y, Yamamoto K (2022) Communication-oriented model fine-tuning for packet-loss resilient distributed inference under highly lossy IoT networks. IEEE Access 10. https://doi.org/10.1109/ACCESS.2022.3149336

  14. Chen YT, Lu LY, Yu X, Li X (2019) Adaptive method for packet loss types in IoT: an Naive Bayes distinguisher. Electronics (Switzerland) 8(2). https://doi.org/10.3390/electronics8020134

  15. Zhu J, Hou P, Nagayama K, Hou Y, Denno S, Ferdian R (2022) Two-dimensional RSSI-based indoor localization using multiple leaky coaxial cables with a probabilistic neural network. IEEE Access 10. https://doi.org/10.1109/ACCESS.2022.3153083

  16. Li G, Geng E, Ye Z, Xu Y, Lin J, Pang Y (2018) Indoor positioning algorithm based on the improved RSSI distance model. Sensors (Switzerland) 18(9). https://doi.org/10.3390/s18092820

  17. Poulose A, Han DS (2021) Hybrid deep learning model based indoor positioning using wi-fi RSSI heat maps for autonomous applications. Electronics (Switzerland) 10(1). https://doi.org/10.3390/electronics10010002

  18. Demircioğlu ED, Kalipsiz O (2022) API message-driven regression testing framework. Electronics (Switzerland) 11(17). https://doi.org/10.3390/electronics11172671

  19. Stoitsov G (2014) One implementation of API interface for RouterOS. 3(2). https://doi.org/10.2772/42641

  20. Fang C, Li S, Wang K (2022) Accurate underwater optical wireless communication model with both line-of-sight and non-line-of-sight channels. IEEE Photon J 14(6). https://doi.org/10.1109/JPHOT.2022.3216599

  21. Alsaify BA, Almazari MM, Alazrai R, Daoud MI (2020) A dataset for Wi-Fi-based human activity recognition in line-of-sight and non-line-of-sight indoor environments. Data Brief 33. https://doi.org/10.1016/j.dib.2020.106534

  22. Buller PF, McEvoy GM (2012) Strategy, human resource management and performance: sharpening line of sight. Human Resour Manag Rev 22(1). https://doi.org/10.1016/j.hrmr.2011.11.002

  23. Heide F, O’Toole M, Zang K, Lindell DB, Diamond S, Wetzstein G (2019) Non-line-of-sight imaging with partial occluders and surface normal. ACM Trans Graph 38(3). https://doi.org/10.1145/3269977

  24. Pan Z et al. (2022) Onsite non-line-of-sight imaging via online calibration. IEEE Photon J 14(5). https://doi.org/10.1109/JPHOT.2022.3207785

  25. Merdan FAB, Thiagarajah SP, Dambul K (2022) Non-line of sight visible light communications: a technical and application based survey. Optik (Stuttg) 259. https://doi.org/10.1016/j.ijleo.2022.168982

  26. Sun X et al (2020) Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. Opt Commun 461. https://doi.org/10.1016/j.optcom.2020.125264

  27. Ohaneme CO (2012) Analysis of interference and channel capacity in a CDMA wireless network using dynamic channel assignment (DCA) strategy. Int J Comput Netw Commun 4(5). https://doi.org/10.5121/ijcnc.2012.4510

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firmansyah Maulana Sugiartana Nursuwars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nursuwars, F.M.S., Hiron, N., Aldya, A.P., Wahyudin, A.S. (2024). CC1101 Network for Healthcare Cyber Physical System on Air Quality Data Acquisition. In: Triwiyanto, T., Rizal, A., Caesarendra, W. (eds) Proceedings of the 4th International Conference on Electronics, Biomedical Engineering, and Health Informatics. ICEBEHI 2023. Lecture Notes in Electrical Engineering, vol 1182. Springer, Singapore. https://doi.org/10.1007/978-981-97-1463-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1463-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1462-9

  • Online ISBN: 978-981-97-1463-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics