Skip to main content

Metabolic Engineering of Lipid Biosynthesis Pathway to Enhance the Oil Content in Microalgae

  • Chapter
  • First Online:
Recent Advances in Bioprocess Engineering and Bioreactor Design

Abstract

Today, a large range of software programmes are used in the field of metabolic engineering. Such applications were shaped to provide support for a variety of experimental and analytical practices. Bioinformatics is used all over the metabolic engineering approach to separate as well as evaluate useful data derived from enormous data volumes. In the current state of renewable energy, which is fixated on the expansion of alternative and sustainable sources of energy, microalgae are at the top of the list as the most capable feedstocks for the manufacturing of biofuels. However, the complexity of microalgal culture, which involves collecting, concentrating, drying, and extraction of lipids, is the main barrier to the switch to algae-based biofuel production. Triacylglycerols (TAGs), the main building blocks for lipid synthesis, are stored by a number of green microalgae. It has been discovered that novel metabolically important genes exist in oleaginous microalga like Chlamydomonas reinhardtii, etc., which would improve lipid production in these microalgae. An interactive perspective on enhancing lipid synthesis, which ultimately enhances oil production, is provided by several additional components of metabolic engineering employing OptFlux and effective bioprocess design. The main goal of this research is to use metabolic engineering and reaction engineering techniques to examine the ability of microalgae to generate increased bio-oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124:1133–1141

    Article  Google Scholar 

  • Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegradation 52(1):35–42

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid/Fett 99(7):239–246

    Article  CAS  Google Scholar 

  • Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health Part B 24(4):421–433

    Article  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  PubMed  Google Scholar 

  • Ben-Ghedalia D, Shefet G, Dror Y (1983) Chemical treatments for increasing the digestibility of cotton straw: 1. Effect of ozone and sodium hydroxide treatments on rumen metabolism and on the digestibility of cell walls and organic matter. J Agric Sci 100(2):393–400

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49(5):568–577

    Article  CAS  PubMed  Google Scholar 

  • Bouchedja DN, Danthine S, Kar T, Fickers P, Boudjellal A, Delvigne F (2017) Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour Bioprocess 4:1–12

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9:84

    Article  Google Scholar 

  • Brown LM, Zeiler KG (1993) Aquatic biomass and carbon dioxide trapping. Energy Convers Manag 34(9–11):1005–1013

    Article  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  CAS  PubMed  Google Scholar 

  • Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30(2):153–157

    Article  CAS  Google Scholar 

  • Chum HL, Johnson DK, Black S, Baker J, Grohmann K, Sarkanen KV, Schroeder HA (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: I. Enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng 31(7):643–649

    Article  CAS  PubMed  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  CAS  PubMed  Google Scholar 

  • Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis. In: Biotechnol. Bioeng. Symp. (United States), vol 12, No. CONF-820580. Colorado State Univ., Fort Collins

    Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Komaitis M, Aggelis G, Philippoussis A (2014) Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst Eng 37:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Dourou M, Mizerakis P, Papanikolaou S, Aggelis G (2017) Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl Microbiol Biotechnol 101:7213–7226

    Article  CAS  PubMed  Google Scholar 

  • Duff SJ, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55(1):1–33

    Article  CAS  Google Scholar 

  • Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100(1):356–361

    Article  CAS  PubMed  Google Scholar 

  • Eberly JO, Ringelberg DB, Indest KJ (2013) Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 40(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Article  CAS  PubMed  Google Scholar 

  • Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98:23–35

    Article  PubMed  Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  CAS  PubMed  Google Scholar 

  • Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385

    Article  CAS  PubMed  Google Scholar 

  • Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9(1):1–14

    Article  Google Scholar 

  • Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79(9):3122–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand M, Abbriano RM, Polle JE, Traller JC, Trentacoste EM, Smith SR, Davis AK (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17(3):506–514

    Article  CAS  PubMed  Google Scholar 

  • Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhütter HG (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12(1):1–7

    Article  Google Scholar 

  • Ilic-Tomic T, Genčić MS, Živković MZ, Vasiljevic B, Djokic L, Nikodinovic-Runic J, Radulović NS (2015) Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10. Appl Microbiol Biotechnol 99:4815–4833

    Article  CAS  PubMed  Google Scholar 

  • Jiménez C, Cossı́o BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221(1–4):331–345

    Article  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  Google Scholar 

  • Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163

    CAS  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1(1):1–13

    Article  Google Scholar 

  • Klug RM, Benning C (2001) Two enzymes of diacylglyceryl-O-4′-(N, N, N,-trimethyl) homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc Natl Acad Sci 98(10):5910–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93:891–900

    Article  CAS  PubMed  Google Scholar 

  • Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (2006) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry, pp 45–125

    Google Scholar 

  • Kumar S, Gupta N, Pakshirajan K (2015) Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng 3(3):1630–1636

    Article  CAS  Google Scholar 

  • Leung DY, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  CAS  Google Scholar 

  • Li K, Zhang L, Zhu L, Zhu X (2017) Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol 234:48–52

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185:9–22

    Article  PubMed  Google Scholar 

  • Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, Church GM (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5(1):296

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch PT, Davey MR (2012) Electrical manipulation of cells. Springer, New York

    Google Scholar 

  • Maa F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Google Scholar 

  • MacDonald DG, Bakhshi NN, Mathews JF, Roychowdhury A, Bajpai P, Moo-Young M (1983) Alkali treatment of corn stover to improve sugar production by enzymatic hydrolysis. Biotechnol Bioeng 25(8):2067–2076

    Article  CAS  PubMed  Google Scholar 

  • McCarthy C (1971) Utilization of palmitic acid by Mycobacterium avium. Infect Immun 4(3):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao XL, Wu QY (2004) Bio-oil fuel production from microalgae after heterotrophic growth. Renew Energy Resour 4(116):41–44

    Google Scholar 

  • Mongrand S, Bessoule JJ, Cabantous F, Cassagne C (1998) The C16: 3\C18: 3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49(4):1049–1064

    Article  CAS  Google Scholar 

  • Motamedian E, Naeimpoor F (2011) Prediction of proton exchange and bacterial growth on various substrates using constraint-based modeling approach. Biotechnol Bioprocess Eng 16:875–884

    Article  CAS  Google Scholar 

  • Muzaffar HS, Mohit N, Kumar SL, Garima A (2020) Kinetic study of dyes degradation by Aspergillus niger in submerged fermentation. Res J Chem Environ 24(4):16–24

    CAS  Google Scholar 

  • Nigam M, Husain SM, Awasthi G (2018) Microbial production and purification of cellulase enzyme on waste as a substrate. Toxicol Int 25(1):1–6

    Google Scholar 

  • Nigam M, Yadav R, Awasthi G (2021) In-silico construction of hybrid ORF protein to enhance algal oil content for biofuel. In: Advances in biomedical engineering and technology: select proceedings of ICBEST 2018. Springer, Singapore, pp 67–89

    Chapter  Google Scholar 

  • Okano K, Kitagawa M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim Feed Sci Technol 120(3–4):235–243

    Article  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140(4):931–943

    Article  CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113(8):1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Aggelis G (2017) Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. Eur J Lipid Sci Technol 119(9):1600507

    Article  Google Scholar 

  • Patil KR, Åkesson M, Nielsen J (2004) Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol 15(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Powell EE, Hill GA (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87(9):1340–1348

    Article  CAS  Google Scholar 

  • Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13 C-based metabolic flux analysis. Microb Cell Factories 8:1–15

    Article  Google Scholar 

  • Quesada J, Rubio M, Gómez D (1999) Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol 19(1–2):115–137

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160

    Article  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  CAS  PubMed  Google Scholar 

  • Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4(1):1–12

    Article  Google Scholar 

  • Röttig A, Atasayar E, Meier-Kolthoff JP, Spröer C, Schumann P, Schauer J, Steinbüchel A (2017) Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil. Int J Syst Evol Microbiol 67(6):1676–1682

    Article  PubMed  Google Scholar 

  • Santacesaria E, Vicente GM, Di Serio M, Tesser R (2012) Main technologies in biodiesel production: state of the art and future challenges. Catal Today 195(1):2–13

    Article  CAS  Google Scholar 

  • Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 7(1):1–11

    Article  Google Scholar 

  • Sarkanen KV (1980) Acid-catalyzed delignification of lignocellulosics in organic solvents. In: Progress in biomass conversion, vol 2. Elsevier, pp 127–144

    Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin JA (2010) Metabolic systems analysis to advance algal biotechnology. Biotechnol J 5(7):660–670

    Article  CAS  PubMed  Google Scholar 

  • Schuhmann H, Lim DK, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3(1):71–86

    Article  CAS  Google Scholar 

  • Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 99(23):15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442

    Article  CAS  Google Scholar 

  • Shields-Menard SA, Amirsadeghi M, Sukhbaatar B, Revellame E, Hernandez R, Donaldson JR, French WT (2015) Lipid accumulation by Rhodococcus rhodochrous grown on glucose. J Ind Microbiol Biotechnol 42(5):693–699

    Article  CAS  PubMed  Google Scholar 

  • Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102(21):7695–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza KST, Ramos CL, Schwan RF, Dias DR (2017) Lipid production by yeasts grown on crude glycerol from biodiesel industry. Prep Biochem Biotechnol 47(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Srinophakun P, Thanapimmetha A, Rattanaphanyapan K, Sahaya T, Saisriyoot M (2017) Feedstock production for third generation biofuels through cultivation of Arthrobacter AK19 under stress conditions. J Clean Prod 142:1259–1266

    Article  CAS  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Elsevier

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Tan HW, Aziz AA, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energ Rev 27:118–127

    Article  CAS  Google Scholar 

  • Thakur N, Nigam M, Tewary R, Rajvanshi K, Kumar M, Shukla SK et al (2022) Drivers for the behavioural receptiveness and non-receptiveness of farmers towards organic cultivation system. J King Saud Univ Sci 34(5):102107

    Article  Google Scholar 

  • Thakur N, Nigam M, Mann NA, Gupta S, Hussain CM, Shukla SK et al (2023) Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Funct Integr Genomics 23(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thring RW, Chornet E, Overend RP (1990) Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature. Biomass 23(4):289–305

    Article  CAS  Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51(1):43–52

    Article  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763

    Article  PubMed  Google Scholar 

  • Watson MR (1984) Metabolic maps for the Apple II. Biochem Soc Trans 12(6):1093–1094

    Article  CAS  Google Scholar 

  • Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, Ragauskas AJ (2015) Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol 99:7369–7377

    Article  CAS  PubMed  Google Scholar 

  • Wiechert W, Möllney M, Petersen S, De Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3(3):265–283

    Article  CAS  PubMed  Google Scholar 

  • Witsuthammakul A, Sooknoi T (2012) Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Appl Catal A Gen 413:109–116

    Article  Google Scholar 

  • Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:1–6

    Article  Google Scholar 

  • Xuan J, Leung MK, Leung DY, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energ Rev 13(6–7):1301–1313

    Article  CAS  Google Scholar 

  • Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery–from biofuels to natural products. Bioresour Technol 135:166–174

    Article  CAS  PubMed  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69(4):451–455

    Article  CAS  Google Scholar 

  • Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:1–8

    Article  Google Scholar 

  • Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

    Google Scholar 

  • Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5(1):1–10

    Article  Google Scholar 

  • Zimmermann U, Neil GA (1996) Electro manipulation of cells. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, Z., Nigam, M., Singh, L.K. (2024). Metabolic Engineering of Lipid Biosynthesis Pathway to Enhance the Oil Content in Microalgae. In: Dhagat, S., Jujjavarapu, S.E., Sampath Kumar, N., Mahapatra, C. (eds) Recent Advances in Bioprocess Engineering and Bioreactor Design. Springer, Singapore. https://doi.org/10.1007/978-981-97-1451-3_3

Download citation

Publish with us

Policies and ethics