Skip to main content

Metabolic Burden Analysis in In Vitro Culture of Plants: A Bioprocess Strategy for Efficient Process Design

  • Chapter
  • First Online:
Recent Advances in Bioprocess Engineering and Bioreactor Design

Abstract

Plants serve as the source of a myriad of products owing to the therapeutic properties of their secondary metabolites. The increasing commercial importance but low yield of secondary metabolites has now raised interest in research focusing on increasing their yield. Alternatively, studies are conducted for mass propagation of plants. Although bioreactors are used extensively for microbial systems, they are now being considered as suitable alternatives for the production of secondary metabolites and mass propagation of plants. The successful design of a bioprocess strategy to culture different morphological forms of plants, viz. whole plant, callus, friable cell, and suspension culture, largely depend on the successful design of bioprocess parameters. The production of metabolites always imparts metabolic burden on the cell, a bioprocess parameter, scarcely explored for the production of metabolites in higher eukaryotes, especially plants. The metabolic burden is indicative of the ability of a cell to assimilate the resources (nutrients) and use the energy, thus derived, for growth and metabolite production. It is evident that metabolic burden is a parameter to assess the additional load on cells (or organism) in production, and understanding of the parameter will pave the way for designing an efficient bioprocess strategy. Previous studies have explored oxygen uptake rate, as an important parameter, indicative of metabolic burden. The importance of oxygen assimilation rate on plant cell culture and its possible impact on cell metabolism is being presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdullah M, Ariff A, Marziah M, Ali A, Lajis N (2000) Strategies to overcome foaming and wall growth during the cultivation of Morinda elliptica cell suspension culture in a stirred-tank bioreactor, plant cell, tissue and organ. Culture 60:205–212

    CAS  Google Scholar 

  • Amanullah A, Tuttiett B, Nienow AW (1998) Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol Bioeng 57:198–210

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Singh P, Rani R, Ghosh S (2018) Oxygen uptake rate as a tool for on-line estimation of cell biomass and bed temperature in a novel solid-state fermentation bioreactor. Bioprocess Biosyst Eng 41:917–929

    Article  CAS  PubMed  Google Scholar 

  • Astarita G (1967) Mass transfer with chemical reaction. Elsevier, Boston

    Google Scholar 

  • Bandyopadhyay B, Humphrey AE, Taguchi H (1967) Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9:533–544

    Article  CAS  Google Scholar 

  • Calik P, Yilgör P, Ayhan P, Demir A (2004) Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci 59:5075–5083

    Article  CAS  Google Scholar 

  • Camara AB (2007) Medida del stress hidrodinámico en cultivos de Rhodococcus erythropolis IGTS8, MSc thesis, Universidad Complutense Madrid, Spain

    Google Scholar 

  • Cazzulino D, Pederson H, Chin CK (1991) Bioreactors and image analysis for scale-up and plant propagation. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, San Diego, pp 147–177

    Google Scholar 

  • Chisti Y (1999a) In: Flickinger MC, Drew SW (eds) Mass transfer in encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 1607–1640

    Google Scholar 

  • Chisti Y (1999b) In: Flickinger MC, Drew SW (eds) Shear sensitivity in encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 2379–2406

    Google Scholar 

  • Cragg AH (1992) Large-scale plant cell culture: methods, applications and products. Curr Opin Biotech 3:105–109

    Article  Google Scholar 

  • Curtis W, Emery A (1993) Plant cell suspension culture rheology. Biotechnol Bioeng 42:520–526

    Article  CAS  PubMed  Google Scholar 

  • de Waal KJA, Okeson JC (1966) The oxidation of aqueous sulphite solutions. Chem Eng Sci 21:559–572

    Article  Google Scholar 

  • Doran PM (1993) Design of reactors for plant cells and organs. Adv Biochem Eng Biotechnol 48:115–168

    Google Scholar 

  • Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15:319–335

    Article  CAS  PubMed  Google Scholar 

  • Ducros E, Ferrari M, Pellegrino M, Raspanti C, Bogni C (2009) Effect of aeration and agitation on the protease production by Staphylococcus aureus mutant RC128 in a stirred tank bioreactor. Bioprocess Biosyst Eng 32:143–148

    Article  CAS  PubMed  Google Scholar 

  • Dunlop E, Namdev P, Rosenberg M (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49:2263–2276

    Article  CAS  Google Scholar 

  • Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue culture. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2005) Prediction of gas–liquid mass transfer in sparged stirred tank bioreactors. Biotechnol Bioeng 92:761–772

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ochoaa F, Gomeza E, Santosa VE, Merchukb JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    Article  Google Scholar 

  • Gogate PR, Pandit AB (1999) Survey of measurement technique for gas–liquid mass transfer coefficient in bioreactors. Biochem Eng J 4:7–15

    Article  CAS  Google Scholar 

  • Gomez E, Santos VE, Alcon A, Garcia-Ochoa F (2006) Oxygen transport rate on Rhodococcus erythropolis cultures: effect on growth and BDS capability. Chem Eng Sci 61:4595–4604

    Article  CAS  Google Scholar 

  • Gupta A, Rao GA (2003) Study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358

    Article  CAS  PubMed  Google Scholar 

  • Haas C, Weber J, Ludwig-Mueller J, Deponte S, Bley T, Georgiev M (2008) Flow cytometry and phytochemical analysis of a sunflower cell suspension culture in a 5-L bioreactor. Z Naturforsch 63:699–705

    Article  CAS  Google Scholar 

  • Harris IJ, Roper GH (1964) Absorption of oxygen by sodium sulfite on sieve plate, Canada. J Chem Eng 42:34–37

    CAS  Google Scholar 

  • Hegarty PK, Smart NJ, Scragg H (1986) The aeration of Catharanthus roseus L.G. Don suspension cultures in airlift bioreactors: the inhibitory effect at high aeration rates on culture growth. J Exp Bot 7:1911–1920

    Article  Google Scholar 

  • Hermann R, Walther N, Maier U, Buchs J (2001) Optical method for the determination of the oxygen–transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74:355–363

    Article  CAS  PubMed  Google Scholar 

  • Heyerdahl PHO, Olsen AS, Hvoslef-Eide AK (1995) Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and Environment Control in Plant Tissue Culture. Academic Publisher, Dordrecht, pp 87–123

    Chapter  Google Scholar 

  • Hibino K, Ushiyama K (1999) In: Fu TJ, Singh G, Curtis WR (eds) Commercial production of ginseng by plant tissue culture technology, in plant cell and tissue culture for the production of food ingredients. Springer, Boston, pp 215–224

    Chapter  Google Scholar 

  • Ilan A, Ziv M, Halevy AA (1995) Propagation and corm development of Brodiaea in liquid cultures. Scientia Hort 63:101–112

    Article  Google Scholar 

  • James EA, Wang C, Wang Z, Reeves R, Shin JH, Magnuson NS, Lee JM (2000) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif 19:131–138

    Article  CAS  PubMed  Google Scholar 

  • Kieran P (2001) Bioreactor design for plant cell suspension cultures. In: Cabral JMS (ed) Principles of multiphase reactor design. Harwood Academic Publishers, New York, pp 391–426

    Google Scholar 

  • Kieran PM, Malone DM, MacLoughlin PF (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49:2263–2276

    Article  Google Scholar 

  • Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59:39–52

    Article  CAS  PubMed  Google Scholar 

  • Kilian SG, Prior BA, Pretorius IS, du Preez JC, Venter JJ, Potgieter HJ (1983) Nutritional, temperature, ph, and oxygen requirements of Candida wickerhamii. Eur J Appl Microbiol Biotechnol 17:334–338

    Article  CAS  Google Scholar 

  • Kocabas P, Calık P, Özdamar TH (2006) Fermentation characteristics of l-tryptophan production by thermoacidophilic bacillus acidocaldarius in a defined medium. Enzym Microb Technol 39:1077–1088

    Article  CAS  Google Scholar 

  • Kondo O, Honda H, Taya M, Kobayahshi T (1989) Comparison of growth properties of carrot hairy root in various bioreactors. Appl Microbiol Biotechnol 32:291–294

    Article  CAS  Google Scholar 

  • Linek V (1966) Bestimmung der Phasen–Grenzflache in einem mit mechanischem Ruhrwerk versehenen Reaktor bei Gasdurchgang. Chem Eng Sci 21:777–790

    Article  CAS  Google Scholar 

  • Linek V, Tvrdik J (1971) A generalization of kinetic data on sulphite oxidation systems. Biotechnol Bioeng 13:353–369

    Article  CAS  Google Scholar 

  • Linek V, Vacek V (1981) Chemical engineering use of catalysed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas–liquid contactors. Chem Eng Sci 36:1747–1768

    Article  CAS  Google Scholar 

  • Linek V, Mayrhoferova J, Mosnerova J (1970) The influence of diffusivity on liquid–phase mass transfer in solutions of electrolytes. Chem Eng Sci 25:1033–1045

    Article  CAS  Google Scholar 

  • Maier U, Losen M, Buchs J (2004) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J 17:155–167

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) Revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pavlov A, Georgiev M, Ilieva M (2005) Production of Rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: effect of dissolved oxygen concentration and agitation. World J Microbiol Biotechnol 21:389–339

    Article  CAS  Google Scholar 

  • Puthli MS, Rathod VK, Pandit AB (2005) Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor. Biochem Eng J 23:25–30

    Article  CAS  Google Scholar 

  • Qi HN, Goudar CT, Michaels JD, Henzler HJ, Jovanovic GN, Konstantinov KB (2003) Experimental and theoretical analysis of tubular membrane aeration for mammalian cell bioreactors. Biotechnol Prog 19:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Reith T, Beek WJ (1973) The oxidation of aqueous sodium sulphite solutions. Chem Eng Sci 28:1331–1339

    Article  CAS  Google Scholar 

  • Robinson CW, Wilke CR (1974) Simultaneous measurement of interfacial area and mass transfer coefficients for well–mixed gas dispersion in aqueous electrolyte solutions. AICHE J 20:285–293

    Article  CAS  Google Scholar 

  • Ruchti G, Dunn IJ, Bourne JR, von Stockar U (1985) Practical guidelines for the determination of oxygen transfer coefficients (kLa) with the sulfite oxidation method. Chem Eng J 30:29–389

    Article  CAS  Google Scholar 

  • Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals. Springer, Boston, MA, pp 203–221

    Chapter  Google Scholar 

  • Sharma MM, Danckwerts PV (1970) Chemical methods of measuring interfacial area and mass transfer coefficients in two-fluid systems. Br Chem Engng 15:522–528

    CAS  Google Scholar 

  • Su WW, Arias R (2003) Continuous perfusion plant cell culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95:13–20

    Article  CAS  PubMed  Google Scholar 

  • Su WW, Caram HS, Humphrey AE (1992) Optimal design of the tubular microporous membrane aerator for shear-sensitive cell cultures. Biotechnol Prog 8:19–24

    Article  CAS  PubMed  Google Scholar 

  • Suijdam V, Kossen NWF, Joha AC (1978) Model for oxygen transfer in a shake flask. Biotechnol Bioeng 20:1695–1709

    Article  Google Scholar 

  • Suresh S, Srivastava VC, Mishra IM (2009) Techniques for oxygen transfer measurement in bioreactors: a review. J Chem Technol Biotechnol 84:1091–1103

    Article  CAS  Google Scholar 

  • Taticek RA, Moo-Young M, Legge RL (1990) Effect of bioreactor configuration on substrate uptake by cell suspension cultures of the plant Eschscholtzia californica. Appl Microbiol Biotechnol 33:280–286

    Article  CAS  Google Scholar 

  • Tautorus TE, Lulsdorf MM, Kikcio SE (1994) Nutrient utilization during bioreactor culture and maturation of somatic embryo culture of Picea marianna and Picea glauca-engelmannii. In Vitro Cell Dev Biol Plant 30:58–63

    Article  Google Scholar 

  • Van’t Riet K (1975) Turbine agitator hydrodynamics and dispersion performance, Ph.D. thesis, University of Technology

    Google Scholar 

  • Vardar F, Lilly MD (1982) Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations. Eur J Appl Microbiol Biotechnol 14:203–211

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F, Ubaldini S (1998) Empirical models for oxygen mass transfer: a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching. Process Biochem 33:367–376

    Article  CAS  Google Scholar 

  • Westerterp KR, Van Dierendonck LL, De Kraa JA (1963) Interfacial areas in agitated gas–liquid contactors. Chem Eng Sci 18:157–168

    Article  CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Wildi A, Mohagheghzadeh E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents, plant genetic. Resources 3:90–100

    CAS  Google Scholar 

  • Zhang ZY, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponins and polysaccharide by high-density cultivation of Panax notoginseng cells. Biotechnol Prog 20:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Ziv M (2000) Bioreactor technology for plant micropropagation. Hort Rev 24:1–30

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, U., Mathur, A. (2024). Metabolic Burden Analysis in In Vitro Culture of Plants: A Bioprocess Strategy for Efficient Process Design. In: Dhagat, S., Jujjavarapu, S.E., Sampath Kumar, N., Mahapatra, C. (eds) Recent Advances in Bioprocess Engineering and Bioreactor Design. Springer, Singapore. https://doi.org/10.1007/978-981-97-1451-3_10

Download citation

Publish with us

Policies and ethics