Skip to main content

Remote Sensing and Geographic Information Systems Driven Data Analysis

  • Chapter
  • First Online:
Hydrological Processes Modelling and Data Analysis

Part of the book series: Water Science and Technology Library ((WSTL,volume 127))

  • 144 Accesses

Abstract

Remote sensing (RS) and Geographic Information Systems (GIS) are routinely used in hydrologic data monitoring, mapping and modelling. This chapter introduces the basic concepts of the RS and GIS. The earth observation satellites and missions, image processing techniques, and spectral indices are discussed. Similarly, the popular GIS spatial and attribute data models are presented. Data sources for hydrology and water resources modelling are highlighted. Besides, a few prevalent commercial and open-source GIS and remote sensing software are enlisted. The chapter includes the RS and GIS applications in flood management, drought monitoring, water quality monitoring and water body mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya TD, Subedi A, Huang H, Lee DH (2019) Application of water indices in surface water change detection using landsat imagery in Nepal. Sens Mater 31:1429–1447

    Google Scholar 

  • Alsabhan W (2010) Real-time mobile GIS prototype: design, architecture, and usability study. Int J Comput Sci Network Security 10:260–266

    Google Scholar 

  • Ambika A, Mishra V (2022) Enhancing drought monitoring and assessment capability in India through high-resolution (250m) data. Earth Syst Sci Data Discus: essd-2022-81

    Google Scholar 

  • Andreoli,R, Yeson H, Li J, Desnos YL (2007). Inland lake monitoring using low and medium resolution ENVISAT ASAR and optical data: case study of Poyang Lake (Jiangxi, P.R. China). In: 2007 IEEE International geoscience and remote sensing symposium, Barcelona

    Google Scholar 

  • Atif I, Mahboob MA, Waheed A (2015) Spatio-temporal mapping and multi-sector damage assessment of 2014 flood in Pakistan using remote sensing and GIS. Indian J Sci Technol 8:1–18

    Google Scholar 

  • Bajracharya SR, Shrestha MS, Shrestha AB (2014) Assessment of high-resolution satellite rainfall estimation products in a streamflow model for flood prediction in the Bagmati basin. Nepal. J Flood Risk Manag 10(1):5–16

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Baret F, Guyot G, Major DJ (1989a) Crop biomass evaluation using radiometric measurements. Photogrammetria (PRS) 43:241–256

    Article  Google Scholar 

  • Baret E, Guyot G, Major DJ (1989b) TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of 12th Canadian symposium on remote sensing, Vancouver, Canada, pp 1355–1358

    Google Scholar 

  • Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J et al (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf 39:79–87

    Google Scholar 

  • Bhardwaj J, Kuleshov Y, Chua ZW, Watkins AB, Choy S, Sun QC (2022) Evaluating satellite soil moisture datasets for drought monitoring in Australia and the south-west Pacific. Remote Sens 14:3971

    Article  Google Scholar 

  • Bonansea M, Ledesma M, Bazán R, Ferral A, German A, O’Mill P, Rodriguez C, Pinotti L (2019) Evaluating the feasibility of using Sentinel-2 imagery for water clarity assessment in a reservoir. J S Am Earth Sci 95:102265

    Article  Google Scholar 

  • Chawla I, Karthikeyan L, Mishra AK (2020) A review of remote sensing applications for water security: quantity, quality, and extremes. J Hydrol 585:124826

    Article  CAS  Google Scholar 

  • Chen Q, Zhang Y, Ekroos A, Hallikainen M (2004) The role of remote sensing technology in the EU water framework directive (WFD). Environ Sci Policy 7:267–276

    Article  Google Scholar 

  • Cheng KH, Chan SN, Lee JH (2020) Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs). Mar Pollut Bull 152:110889

    Article  CAS  Google Scholar 

  • Cheng S, Wang W, Yu Z (2021) Evaluating the drought-monitoring utility of GPM and TRMM precipitation products over mainland China. Remote Sens 13:4153

    Article  Google Scholar 

  • Chormanski J, Van de Voorde t, De Roeck T, Batelaan O, Canters F (2008) Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover. Sensors 8:910–932

    Google Scholar 

  • Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Dang ATN, Kumar L (2017) Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8. Ho Chi Minh City, Vietnam, Geomatics, Nat Hazards Risk 8:1792–1811

    Article  Google Scholar 

  • De Roo APJ, Wesseling CG, Van Deursen WPA (2000) Physically based river basin modeling within a GIS: the LISFLOOD model. Hydrol Process 14:1981–1992

    Article  Google Scholar 

  • DHI (2012) MIKE 21–2D modelling of coast and sea. DHI Water & Environment Pvt Ltd., Denmark

    Google Scholar 

  • Ding J, Cuo L, Zhang Y, Zhu F (2018) Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015. Sci Rep:1–23

    Google Scholar 

  • Ehlers M (1990) Remote Sensing and geographic information systems: towards integrated spatial information processing. IEEE Trans Geosci Remote Sens 28:763–766

    Article  Google Scholar 

  • El Saadi AM, Yousry MM, Jahin HS (2014) Statistical estimation of rosetta branch water quality using multispectral data. Water Sci 28:18–30

    Article  Google Scholar 

  • Eon RS, Bachmann CM (2021) Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial sys-tem. Sci Rep 11:3270

    Article  CAS  Google Scholar 

  • ESRI (2022). What is GIS? Overview. https://www.esri.com/en-us/what-is-gis/overview. Visited 28 Mar 2022

  • Faisal AA, Kafy AA, Roy S (2018) Integration of remote sensing and GIS techniques for flood monitoring and damage assessment: a case study of Naogaon District, Bangladesh. J Remote Sensing GIS 7:23

    Article  Google Scholar 

  • Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35

    Article  Google Scholar 

  • Fisher A, Danaher T (2013) A water index for SPOT5 HRG satellite imagery, New South Wales, Australia, determined by linear discriminant analysis. Remote Sens 5:5907–5925

    Article  Google Scholar 

  • Fisher A, Flood N, Danaher T (2016) Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens Environ 175:167–182

    Article  Google Scholar 

  • Foody GM (2008) Harshness in image classification accuracy assessment. Int J Remote Sens 29:3137–3158

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Gao J (2002) Integration of GPS with remote sensing and GIS: reality and prospects. Photogram Eng Remote Sens 68:447–453

    Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80:76–87

    Article  Google Scholar 

  • Gohin F, Van der Zande D, Tilstone G, Eleveld MA, Lefebvre A, Andrieux-Loyer F, Blauw AN, Bryère P, Devreker D, Garnesson P (2019) Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens Environ 233:111343

    Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 33:145–151

    Google Scholar 

  • Guerschman J P, Warren G, Byrne G, Lymburner L, Mueller N, Van Dijk A (2011) MODIS-based standing water detection for flood and large reservoir mapping: algorithm development and applications for the Australian continent. Water for a Healthy Country National Research Flagship Report, Canberra

    Google Scholar 

  • Hagos YG, Andualem TG, Yibeltal M et al (2022) Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl Water Sci 12:148

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  Google Scholar 

  • Hakvoort H, De Haan J, Jordans R, Vos Peters S, Rijkeboer M (2002) Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis. ISPRS J Photogrammetry Remote Sens 57:171–183

    Article  Google Scholar 

  • Hatfield JL, Prueger JH, Sauer TJ, Dold C, O’Brien P, Wacha K (2019) Applications of vegetative indices from remote sensing to agriculture: past and future. Inventions 4:71

    Article  Google Scholar 

  • Havno K, Madsen MN, Dorge J (1995) MIKE11—a generalized river modelling package. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications

    Google Scholar 

  • Hay GJ, Castilla G (2008) Geographic object-based image analysis (GEOBIA): a new name for a new discipline. In: Blaschke T, Lang S, Hay GJ (eds) Object-Based image analysis: spatial concepts for knowledge-driven remote sensing applications. Springer, Berlin

    Google Scholar 

  • Haynes P, Hehl-Lange S, Lange E (2018) Mobile augmented reality for flood visualisation. Environ Model Softw 109:380–389

    Article  Google Scholar 

  • Huang C, Chen Y, Zhang S, Wu J (2018) Detecting, extracting, and monitoring surface water from space using optical sensors: a review. Rev Geophys 56:333–360

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Islam MN, Uyeda H (2007) Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens Environ 108:264–276

    Article  Google Scholar 

  • Jain SK, Saraf AK, Goswami A, Ahmad T (2006) Flood inundation mapping using NOAA AVHRR data. Water Resour Manag 20:949–959

    Article  Google Scholar 

  • Jeyaseelan AT (2003) Droughts and floods assessment and monitoring using remote sensing and GIS. In: Sivakumar MVK, Roy PS, Harmsen K, Saha SK (eds) Satellite Remote sensing and GIS applications in agricultural meteorology. World Meteorological Organisation, Geneva

    Google Scholar 

  • Khalid HW, Zahid Khalil RM, Qureshi MA (2021) Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. The Egyptian J Remote Sens Space Sci 24:619–634

    Google Scholar 

  • Klemenjak S, Waske B, Valero S, Chanussot J (2012) Unsupervised river detection in RapidEye data. In: IEEE International geoscience and remote sensing symposium

    Google Scholar 

  • Konadu DD and C Fosu (2009) Digital Elevation models and GIS for watershed modelling and flood prediction—a case study of Accra Ghana. In: Yanful EK (ed) Appropriate Technologies for environmental protection in the developing world. Springer, Dordrecht

    Google Scholar 

  • Kumar H, Karwariya SK, Kumar R (2022) Google earth engine-based identification of flood extent and flood-affected paddy rice fields using Sentinel-2 MSI and Sentinel-1 SAR data in Bihar state, India. J Indian Soc Remote Sens 50:791–803

    Article  Google Scholar 

  • Kutser T (2012) The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens Environ 123:334–338

    Article  Google Scholar 

  • Lettenmaier DP, Alsdorf D, Dozier J, Huffman GJ, Pan M, Wood EF (2015) In-roads of remote sensing into hydrologic science during the WRR era. Water Resour Res 51:7309–7342

    Article  Google Scholar 

  • Li L, Vrieling A, Skidmore A, Wang T, Muñoz AR, Turak E (2015) Evaluation of MODIS spectral indices for monitoring hydrological dynamics of a small, seasonally-flooded wetland in southern Spain. Wetlands 35(5):851–864

    Article  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn. Wiley, New Jersey

    Google Scholar 

  • Liu D, Chen N, Zhang X, Wang C, Du W (2020) Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: a case study in the middle Yangtze River basin. ISPRS J Photogramm Remote Sens 159:337–351

    Article  Google Scholar 

  • Liu H, Hu H, Liu X, Jiang H, Liu W, Yin X (2022) A comparison of different water indices and band downscaling methods for water bodies mapping from Sentinel-2 imagery at 10-m resolution. Water 14:2696

    Article  Google Scholar 

  • Llcev SD (2019) Global satellite meteorological observation (GSMO) applications, vol 2. Springer, Cham

    Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28:823–870

    Article  Google Scholar 

  • Lu S, Jia L, Zhang L, Wei Y, Baig MHA, Zhai Z et al (2017) Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product. Remote Sens Lett 8:224–233

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • Mure-Ravaud M, Binet G, Bracq M, Perarnaud JJ, Fradin A, Litrico X (2016) A web based tool for operational real-time flood forecasting using data assimilation to update hydraulic states. Environ Model Softw 84:35–49

    Article  Google Scholar 

  • Nghia BPQ, Pal I, Chollacoop N, Mukhopadhyay A (2022) Applying Google earth engine for flood mapping and monitoring in the downstream provinces of Mekong river. Progress Disaster Sci 14:100235

    Article  Google Scholar 

  • Opolot E (2013) Application of remote sensing and geographical information systems in flood management: a review. Res J Appl Sci Eng Tech 6:1884–1894

    Article  Google Scholar 

  • Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8

    Article  Google Scholar 

  • Pearson RL, Miller LD (1972) Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In: Asrar G (ed) Proceedings of the 8th International symposium on remote sensing of environment. Pawnee National Grasslands, Colorado

    Google Scholar 

  • Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422

    Article  CAS  Google Scholar 

  • Phan TN, Kuch V, Lehnert LW (2020) Land Cover classification using Google Earth engine and random forest classifier—the role of image composition. Remote Sens 12:2411

    Article  Google Scholar 

  • Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429

    Google Scholar 

  • Prakash M, Rothauge K (2014) Cleary modelling the impact of dam failure scenarios on flood inundation using SPH. Appl Math Model 38:5515–5534

    Article  Google Scholar 

  • Puttinaovarat S, Horkaew P (2020) Internetworking flood disaster mitigation system based on remote sensing and mobile GIS. Geomatics. Nat Hazards Risk 11:1886–1911

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  • Rajasekaran E, Das NN, Poulsen C, Behrangi A, Swigart J, Svoboda M et al (2018) SMAP soil moisture change as an indicator of drought conditions. Remote Sens 10:788

    Article  Google Scholar 

  • Ramadas M, Samantaray AK (2018) Applications of remote sensing and GIS in water quality monitoring and remediation: a state-of-the-art review. Water remediation. Springer Nature, Singapore

    Google Scholar 

  • Richardson AJ, Weigand C (1977) Distinguishing vegetation from soil background information. Photogram Eng Remote Sens 43

    Google Scholar 

  • Ritchie JC, Cooper CM, Schiebe FR (1990) The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens Environ 33:137–148

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil adjusted vegetation indices. Remote Sens Environ 55:95–107

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the third earth resources technology Satellite-1 symposium, Greenbelt, NASA SP-351, pp 301–317

    Google Scholar 

  • Sahoo AK, Sheffield J, Pam M, Wood EF (2015) Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large scale meteorological drought. Remote Sens Environ 159:181–193

    Article  Google Scholar 

  • Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33:283–301

    Article  Google Scholar 

  • Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Rev Geophys 47

    Google Scholar 

  • Shen L, Li C (2010) Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In: 18th International conference on geoinformatics, IEEE

    Google Scholar 

  • Sidle RC, Ziegler AD, Vogler JB (2007) Contemporary changes in open water surface area of Lake Inle, Myanmar. Sustain Sci 2:55–65

    Article  Google Scholar 

  • Singh A, Jakubowski AR, Chidister I, Townsend PA (2013) A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens Environ 128:74–86

    Article  Google Scholar 

  • Singh CK, Shashtri S, Mukherjee S, Kumari R, Avatar R, Singh A, Singh RP (2011) Application of GWQI to assess effect of land use change on groundwater quality in lower Shiwaliks of Punjab: remote sensing and GIS based approach. Water Resour Manag 25:1881–1898

    Article  Google Scholar 

  • Sivanpillai R, Miller SN (2010) Improvements in mapping water bodies using ASTER data. Ecol Inform 5:73–78

    Article  Google Scholar 

  • Swain R, Sahoo B (2017) Mapping of heavy metal pollution in river water at daily timescale using spatio-temporal fusion of MODIS-aqua and Landsat satellite imageries. J Environ Manage 192:1–14

    Article  CAS  Google Scholar 

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125:91–101

    Article  Google Scholar 

  • Teng J, Jakeman AJ, Vaze J, Croke BFW, Dutta D, Kim SJEM (2017) Flood inundation modelling: a review of methods, recent advances and uncertainty analysis. Environ Model Softw 90:201–216

    Google Scholar 

  • Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545

    Google Scholar 

  • US Army Corps of Engineers (2002) HEC-RAS river analysis systems: Hydraulic reference manual, version 3.1. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California

    Google Scholar 

  • Volpe V, Silvestri S, Marani M (2011) Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens Environ 115:44–54

    Article  Google Scholar 

  • Wang L, BieW, Li H, Liao T, Ding X, Wu G, Fei T (2022) Small water body detection and water

    Google Scholar 

  • West H, Quinn N, Horswell M, White P (2018) Assessing vegetation response to soil moisture fluctuation under extreme drought using Sentinel-2. Water 10:838

    Article  Google Scholar 

  • Wieczorek WF, Delmerico AM (2009) Geographic information systems. Comput Stat 1:167–186

    Article  Google Scholar 

  • Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE et al (2019) Current status of Landsat program, science and applications. Remote Sens Environ 225:127–147

    Article  Google Scholar 

  • Xie C, Huang X, Zeng W, Fang X (2016) A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int J Digital Earth 9:925–941

    Article  Google Scholar 

  • Xu K, Zhang J, Watanabe M, Sun C (2004) Estimating river discharge from very high-resolution satellite data: a case study in the Yangtze River, China. Hydrol Process 18:1927–1939

    Article  Google Scholar 

  • Yang H, Kong J, Hu H Du Y, Gao M, Chen F (2022) A review of remote sensing for water quality retrieval: progress and challenges. Remote Sens 14:1770

    Google Scholar 

  • Ying H, Xia K, Huang X, Feng H, Yang Y, Du X, Huang L (2021) Evaluation of water quality based on UAV images and the IMP-MPP algorithm. Ecol Inform 61:101239

    Article  Google Scholar 

  • Yu L, Leng G, Python A (2022) A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather Clim Extrem 36:100458

    Article  Google Scholar 

  • Yuzugullu O, Aksoy A (2011) Determination of Secchi Disc depths in Lake Eymir using remotely sensed data. Procedia-Soc Behav Sci 19:586–592

    Article  Google Scholar 

  • Zhang L, Jiao W, Zhang H, Huang C, Tong Q (2017) Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens Environ 190:96–106

    Article  Google Scholar 

  • Zhao Q, Chen Q, Jiao M, Wu P, Gao X, Ma M, Hong Y (2018) The temporal spatial characteristics of drought in the Loess Plateau using the remote-sensed TRMM precipitation data from 1998 to 2014. Remote Sens 10:838

    Article  Google Scholar 

  • Zhou X, Wang P, Tansey K, Ghent D, Zhang S, Li H, Wang L (2020) Drought monitoring using the Sentinel-3-based multiyear vegetation temperature condition index in the Guanzhong Plain, China. IEEE J Sel Topics Appl Earth Obs Remote Sens 13:129–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V.P., Singh, R., Paul, P.K., Bisht, D.S., Gaur, S. (2024). Remote Sensing and Geographic Information Systems Driven Data Analysis. In: Hydrological Processes Modelling and Data Analysis. Water Science and Technology Library, vol 127. Springer, Singapore. https://doi.org/10.1007/978-981-97-1316-5_4

Download citation

Publish with us

Policies and ethics