Skip to main content

Effects of Hydrate Saturation and Sand-Filling Content on Hydrate Exploitation Using In-Situ Heat Supply with Chemical Reagents

  • Conference paper
  • First Online:
Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering (DWOG-Hyd 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 472))

Included in the following conference series:

  • 86 Accesses

Abstract

The methods of gas recovery from hydrate-bearing sediments (HBS) for the earth are on further validating and field trial, which is quite far from a technical and commercial demonstration. Based on the efficient heating way to accelerate the hydrate dissociation, a new gas recovery from HBS termed the “in-situ heat generation method with chemical reagents” is proposed by our previous work, and the chemical reagent huff and puff method (CHP) can achieve better gas production and higher energy efficiency (η) and thermal efficiency (ξ) than chemical reagent thermal flooding method (CTF). In this work, the influences of the hydrate saturation and sand-filling content in a three-dimensional cylindrical hydrate simulator (CHS) on the response characteristics (including gas production, temperature change, and ξ) during hydrate exploitation via CHP with separated injection mode are obtained by laboratory experiment. The results indicate that by this method, we could obtain advantageous gas production and realize high η with ideal heat utilization by reducing the heat lost for the HBS framework. In addition, the higher hydrate saturation and more extensive sand-filling scale benefit hydrate exploitation. However, high η cannot be considered a qualitative improvement, and how to efficiently mix the chemical reagents in HBS to generate sufficient heat for hydrate dissociation has not been broken through.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makogon, Y.F.: Natural gas hydrates–a promising source of energy. J. Nat. Gas Sci. Eng. 2(1), 49–59 (2010)

    Article  Google Scholar 

  2. Feng, J., Sun, L., Wang, Y., et al.: Advances of experimental study on gas production from synthetic hydrate reservoir in China. Chin. J. Chem. Eng. 27(9), 2213–2225 (2019)

    Article  Google Scholar 

  3. Zhu, Y., Wang, P., Pang, S., et al.: A review of the resource and test production of natural gas hydrates in China. Energy Fuels 35(11), 9137–9150 (2021)

    Article  Google Scholar 

  4. Yin, Z., Linga, P.: Methane hydrates: a future clean energy resource. Chin. J. Chem. Eng. 27(9), 2026–2036 (2019)

    Article  Google Scholar 

  5. Xiao, K., Zou, C., Yang, Y., et al.: A preliminary study of the gas hydrate stability zone in a gas hydrate potential region of China. Energy Sci. Eng. 8(4), 1080–1091 (2020)

    Article  Google Scholar 

  6. Wang, Z., Wang, Q., Fan, Z., et al.: Equivalency and replaceability between different permeability models of hydrate-bearing porous media when applied to numerical modeling of hydrate dissociation: implications for model selection and parameter assignment. Energy Fuels 35(7), 6090–6100 (2021)

    Article  Google Scholar 

  7. Deng, X., Pan, S., Zhang, J., et al.: Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel 271, 117679 (2020)

    Article  Google Scholar 

  8. Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)

    Article  Google Scholar 

  9. Deng, X., Feng, J., Pan, S., et al.: An improved model for the migration of fluids caused by hydrate dissociation in porous media. J. Petrol. Sci. Eng. 188, 106876 (2020)

    Article  Google Scholar 

  10. Wang, Y., Lang, X., Fan, S., et al.: Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement. Energy Fuels 35(5), 3659–3674 (2021)

    Article  Google Scholar 

  11. Liu, Y., Hou, J., Zhao, H., et al.: A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 144, 265–278 (2018)

    Article  Google Scholar 

  12. Wang, X., Wang, Y., Xie, Y., et al.: Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems. J. Chem. Thermodyn. 131, 247–253 (2019)

    Article  Google Scholar 

  13. Feng, J., Wang, Y., Li, X.: Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand. Appl. Energy 174, 181–191 (2016)

    Article  Google Scholar 

  14. Wang, Z., Zhang, Y., Peng, Z., et al.: Recent advances in methods of gas recovery from hydrate-bearing sediments: a review. Energy Fuels 36(11), 5550–5593 (2022)

    Article  Google Scholar 

  15. Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geology 1(1), 5–16 (2018)

    Article  Google Scholar 

  16. Liu, C., Ye, Y., Meng, Q., et al.: The characteristics of gas hydrates recovered from shenhu area in the South China Sea. Mar. Geol. 307–310, 22–27 (2012)

    Article  Google Scholar 

  17. Ye, J., Qin, X., Xie, W., et al.: The second natural gas hydrate production test in the South China Sea. China Geol. 3(2), 197–209 (2020)

    Article  Google Scholar 

  18. Qina, X., Lu, J., Lu, H., et al.: Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea. China Geol. 3(2), 210–220 (2020)

    Article  Google Scholar 

  19. Moridis, G., Collett, T.S., Pooladi-Darvish, M., et al.: Challenges, uncertainties and issues facing gas production from gas hydrate deposits. SPE Reservoir Eval. Eng. 14(1), 76–112 (2011)

    Article  Google Scholar 

  20. Sloan, E.J.: Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003)

    Article  Google Scholar 

  21. Giraldo, C., Clarke, M.: Stoichiometric approach toward modeling the decomposition kinetics of gas hydrates formed from mixed gases. Energy Fuels 27(8), 4534–4544 (2013)

    Article  Google Scholar 

  22. Sun, X., Mohanty, K.K.: Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem. Eng. Sci. 61(11), 3476–3495 (2006)

    Article  Google Scholar 

  23. Wang, Y., Feng, J., Li, X.: Experimental investigation into methane hydrate dissociation by thermal stimulation with dual vertical well. Energy Procedia 105, 4738–4744 (2017)

    Article  Google Scholar 

  24. Yousif, M.H., Abass, H.H., Selim, M.S., et al.: Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv. Eng. 6(1), 69–76 (1991)

    Article  Google Scholar 

  25. Zheng, R., Li, S., Li, Q., et al.: Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs. Appl. Energy 215, 405–415 (2018)

    Article  Google Scholar 

  26. Wang, X., Dong, B., Wang, F., et al.: Pore-scale investigations on the effects of ice formation/melting on methane hydrate dissociation using depressurization. Int. J. Heat Mass Transf. 131, 737–749 (2019)

    Article  Google Scholar 

  27. Chong, Z.R., Yin, Z., Tan, J.H.C., et al.: Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach. Appl. Energy 204, 1513–1525 (2017)

    Article  Google Scholar 

  28. Wang, P., Yang, M., Chen, B., et al.: Methane hydrate reformation in porous media with methane migration. Chem. Eng. Sci. 168(31), 344–351 (2017)

    Article  Google Scholar 

  29. Seol, Y., Myshakin, E.: Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor. Energy Fuels 25(3), 1099–1110 (2011)

    Article  Google Scholar 

  30. Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆. Appl. Energy 227, 710–718 (2018)

    Article  Google Scholar 

  31. Yamada, H., Chen, L., Lacaille, G., et al.: Experimental study of methane hydrate dissociation and gas production behaviors under depressurization. Int. J. Mech. Eng. Robot. Res. 140–146 (2017)

    Google Scholar 

  32. Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits. Appl. Energy 227, 710–718 (2018)

    Article  Google Scholar 

  33. Li, B., Liu, S., Liang, Y.: Experimental study of methane hydrate dissociation by depressurization and electrical heating. Energy Procedia 105, 5018–5025 (2017)

    Article  Google Scholar 

  34. Wang, B., Dong, H., Fan, Z., et al.: Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation. Energy Procedia 105, 4713–4717 (2017)

    Article  Google Scholar 

  35. Sun, Y., Jia, R., Guo, W., et al.: Design and experimental study of the steam mining system for natural gas hydrates. Energy Fuels 26(12), 7280–7287 (2012)

    Article  Google Scholar 

  36. Song, Y., Kuang, Y., Fan, Z., et al.: Influence of core scale permeability on gas production from methane hydrate by thermal stimulation. Int. J. Heat Mass Transf. 121, 207–214 (2018)

    Article  Google Scholar 

  37. Li, S., Wang, Z., Xu, X., et al.: Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection. J. Nat. Gas Sci. Eng. 46, 555–562 (2017)

    Article  MathSciNet  Google Scholar 

  38. Liu, S., Zhang, Y., Luo, Y., et al.: Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization. J. Clean. Prod. 249, 119399 (2020)

    Article  Google Scholar 

  39. Ruan, X., Li, X., Xu, C.: Numerical investigation of the production behavior of methane hydrates under depressurization conditions combined with well-wall heating. Energies 10(2), 161 (2017)

    Article  Google Scholar 

  40. Minagawa, H., Ito, T., Kimura, S., et al.: Depressurization and electrical heating of methane hydrate sediment for gas production: laboratory-scale experiments. J. Nat. Gas Sci. Eng. 50, 147–156 (2018)

    Article  Google Scholar 

  41. Wan, Q., Si, H., Li, B., et al.: Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization. Appl. Energy 278, 115612 (2020)

    Article  Google Scholar 

  42. Mukhametshina, A., Martynova, E.: Electromagnetic heating of heavy oil and bitumen: a review of experimental studies and field applications. J. Petrol. Eng. 2013, 1–7 (2013)

    Article  Google Scholar 

  43. Misyura, S.Y.: Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation. Energy 181, 589–602 (2019)

    Article  Google Scholar 

  44. Zhao, E., Hou, J., Du, Q., et al.: Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel 290, 120075 (2021)

    Article  Google Scholar 

  45. Chen, G.: A review: enhanced recovery of natural gas hydrate reservoirs. Chin. J. Chem. Eng. (2018)

    Google Scholar 

  46. Zhang, Y.: Experimental Study on Gas Production from Hydrate Reservoir Using Self-heating System Injection Method. ChongQing University (2019)

    Google Scholar 

  47. Li, G., Li, X., Wang, Y., et al.: Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator. Energy 36(5), 3170–3178 (2011)

    Article  Google Scholar 

  48. Li, S., Zheng, R., Xu, X., et al.: Energy efficiency analysis of hydrate dissociation by thermal stimulation. J. Nat. Gas Sci. Eng. 30, 148–155 (2016)

    Article  Google Scholar 

  49. Park, Y., Kim, D., Lee, J., et al.: Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. U.S.A. 103(34), 12690–12694 (2006)

    Article  Google Scholar 

  50. Li, X.S., Wang, Y., Li, G., et al.: Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff. Appl. Energy 94(10), 48–57 (2012)

    Article  Google Scholar 

  51. Wang, Y., Li, X., Li, G., et al.: Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel 117, 688–696 (2014)

    Article  Google Scholar 

  52. Duo-Fu, C., Xu-Xuan, L., Bin, X.: Distribution of gas hydrate stable zones and resource prediction in the QiongDongNan basin of the south Chian sea. Chin. J. Geophys. 47(03), 483–489 (2004)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the CNPC's Major Science and Technology Projects (ZD2019-184-003), the National Natural Science Foundation of China (51991363), the Major Scientific and Technological Innovation Projects in Shandong Province (2022CXGC020407), the Natural Science Foundation of Shandong Province (ZR2023QE025), and the Natural Science Foundation of Qingdao (23-2-1-95-zyyd-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Wang, Z., Chen, L., Li, H., Zhang, J., Yang, H. (2024). Effects of Hydrate Saturation and Sand-Filling Content on Hydrate Exploitation Using In-Situ Heat Supply with Chemical Reagents. In: Sun, B., Sun, J., Wang, Z., Chen, L., Chen, M. (eds) Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering. DWOG-Hyd 2023. Lecture Notes in Civil Engineering, vol 472. Springer, Singapore. https://doi.org/10.1007/978-981-97-1309-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1309-7_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1308-0

  • Online ISBN: 978-981-97-1309-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics