Skip to main content

Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization

  • Conference paper
  • First Online:
Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering (DWOG-Hyd 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 472))

Included in the following conference series:

  • 94 Accesses

Abstract

Natural gas hydrates, as a novel gas separation technology, hold significant promise for the separation of CO2 from flue gas. In this study, a comprehensive analysis integrating hydrate-based technology and membrane separation technology is conducted to establish a post-combustion CO2 capture process. The heat calculation of the hydrate unit in the separation process is performed based on experimental CO2/N2 hydrate separation data, leading to a heat value of 1,104,662 MJ/h for the formation and decomposition of hydrates. In the membrane separation unit, the mathematical model of hollow fiber membranes is employed to conduct an optimization process for the membrane area and inlet pressure. The optimization objectives focus on attaining a product gas with a CO2 concentration of 90 mol% and a CO2 recovery rate of 95%. As a result, the first-stage membrane area is determined to be 8000 m2 and the inlet pressure to be 1.45 MPa, while for the second-stage, the optimal values are found to be 5000 m2 for the membrane area and 2.00 MPa for the inlet pressure. Finally, following the optimization of the energy consumption throughout the entire process, a comprehensive analysis is carried out to assess the energy consumption and energy efficiency of the process. The findings reveal that the most significant energy losses in the process occur during the initial pressurization phase of the feed gas and the subsequent formation and decomposition stages of the hydrates. Additionally, the unit energy cost for CO2 capture is calculated to be 0.4416 kWh/kg CO2. In comparison to alternative post-combustion CO2 capture technologies, this process exhibits distinct advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olivier, J.G.J., Schure, K.M., Peters, J.A.H.W.: Trends in global CO2 and total greenhouse gas emissions. PBL Neth. Environ. Assess. Agency 5, 1–11 (2017)

    Google Scholar 

  2. Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1), 431–441 (2012)

    Google Scholar 

  3. Khatib, H.: IEA world energy outlook 2010—a comment. Energy Policy 39(5), 2507–2511 (2011)

    Article  Google Scholar 

  4. Zhang, J., Yedlapalli, P., Lee, J.W.: Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem. Eng. Sci. 64(22), 4732–4736 (2009)

    Article  Google Scholar 

  5. Hanak, D.P., Manovic, V.: Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer. Fuel 214, 512–520 (2018)

    Article  Google Scholar 

  6. Wang, M., et al.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)

    Google Scholar 

  7. Zhao, H., et al.: Carbon-based adsorbents for post-combustion capture: a review. Greenhouse Gases Sci. Technol. 8(1), 11–36 (2018)

    Google Scholar 

  8. Song, C., et al.: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 101, 265–278 (2019)

    Google Scholar 

  9. Arias, A.M., et al.: Optimization of multi-stage membrane systems for CO2 capture from flue gas. Int. J. Greenhouse Gas Control 53, 371–390 (2016)

    Google Scholar 

  10. Songolzadeh, M., et al.: Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 828131 (2014)

    Google Scholar 

  11. Cheng, Z., et al.: Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renew. Sustain. Energy Rev. 154, 111806 (2022)

    Google Scholar 

  12. Chong, Z.R., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)

    Google Scholar 

  13. Yang, M., et al.: Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl. Energy 116, 26–40 (2014)

    Google Scholar 

  14. Sloan Jr, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)

    Google Scholar 

  15. Eslamimanesh, A., et al.: Application of gas hydrate formation in separation processes: a review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012)

    Google Scholar 

  16. Komatsu, H., et al.: Separation processes for carbon dioxide capture with semi-clathrate hydrate slurry based on phase equilibria of CO2+ N2+ tetra-n-butylammonium bromide+ water systems. Chem. Eng. Res. Des. 150, 289–298 (2019)

    Google Scholar 

  17. Babu, P., et al.: A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261–279 (2015)

    Google Scholar 

  18. Xu, C.-G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv. 4(35), 18301–18316 (2014)

    Article  Google Scholar 

  19. Partoon, B., et al.: Production of gas hydrate in a semi-batch spray reactor process as a means for separation of carbon dioxide from methane. Chem. Eng. Res. Des. 138, 168–175 (2018)

    Google Scholar 

  20. Dashti, H., Yew, L.Z., Lou, X.: Recent advances in gas hydrate-based CO2 capture. J. Nat. Gas Sci. Eng. 23, 195–207 (2015)

    Google Scholar 

  21. Tajima, H., Yamasaki, A., Kiyono, F.: Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29(11), 1713–1729 (2004)

    Article  Google Scholar 

  22. Xie, N., et al.: Energy consumption and exergy analysis of MEA-based and hydrate-based CO2 separation. Ind. Eng. Chem. Res. 56(51), 15094–15101 (2017)

    Google Scholar 

  23. Chang, P.T., et al.: A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture. Chem. Eng. Commun. 209(11), 1553–1569 (2022)

    Google Scholar 

  24. Zhang, X., He, X., Gundersen, T.: Post-combustion carbon capture with a gas separation membrane: parametric study, capture cost, and exergy analysis. Energy Fuels 27(8), 4137–4149 (2013)

    Article  Google Scholar 

  25. Roussanaly, S., et al.: Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J. Membr. Sci. 511, 250–264 (2016)

    Google Scholar 

  26. Mat, N.C., Lipscomb, G.G.: Membrane process optimization for carbon capture. Int. J. Greenhouse Gas Control 62, 1–12 (2017)

    Google Scholar 

  27. Merkel, T.C., et al.: Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359(1–2), 126–139 (2010)

    Google Scholar 

  28. Huang, Y., Merkel, T.C., Baker, R.W.: Pressure ratio and its impact on membrane gas separation processes. J. Membr. Sci. 463, 33–40 (2014)

    Article  Google Scholar 

  29. Interlenghi, S.F., de Medeiros, J.L., Ofélia de Queiroz, F.A.: On small-scale liquefaction of natural gas with supersonic separator: Energy Second Law Anal. Energy Convers. Manag. 221, 113117 (2020)

    Google Scholar 

  30. Mehrpooya, M., Khodayari, R., Moosavian, S.M.A., et al.: Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system. Energy Convers. Manage. 221, 113177 (2020)

    Article  Google Scholar 

  31. Sloan, E.D., Fleyfel, F.: Hydrate dissociation enthalpy and guest size. Fluid Phase Equilib. 76, 123–140 (1992)

    Article  Google Scholar 

  32. Mulder, M.: Basic Principles of Membrane Technology. Springer Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-009-1766-8

    Book  Google Scholar 

  33. Fan, S., et al.: Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23(8), 4202–4208 (2009)

    Google Scholar 

  34. Hashimoto, H., Ozeki, H., Yamamoto, Y., et al.: CO2 capture from flue gas based on tetra-n-butylammonium fluoride hydrates at near ambient temperature. ACS Omega 5(13), 7115–7123 (2020)

    Article  Google Scholar 

  35. Patel, N.C., Teja, A.S.: A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 37(3), 463–473 (1982)

    Article  Google Scholar 

  36. Thakur, N.K., Rajput, S.: Exploration of gas hydrates: geophysical techniques. Springer Science & Business Media (2010). https://doi.org/10.1007/978-3-642-14234-5

  37. Han, H., Scofield, J.M.P., Gurr, P.A., et al.: Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. Chem. Eng. J. 462, 142087 (2023)

    Article  Google Scholar 

  38. Oh, S.Y., Binns, M., Cho, H., et al.: Energy minimization of MEA-based CO2 capture process. Appl. Energy 169, 353–362 (2016)

    Article  Google Scholar 

  39. Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., et al.: CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine. Int. J. Greenhouse Gas Control 1(1), 37–46 (2007)

    Google Scholar 

  40. Song, C.F., et al.: Parametric analysis of a novel cryogenic CO2 capture system based on Stirling coolers. Environ. Sci. Technol. 46(22), 12735–12741 (2012)

    Google Scholar 

  41. Wang, L., Yang, Y., Shen, W., et al.: CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind. Eng. Chem. Res. 52(23), 7947–7955 (2013)

    Article  Google Scholar 

  42. Agarwal, A., Biegler, L.T., Zitney, S.E.: A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. AIChE J. 56(7), 1813–1828 (2010)

    Article  Google Scholar 

  43. Liu, Z., et al.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51(21), 7355–7363 (2012)

    Google Scholar 

  44. Scholes, C.A., et al.: Membrane gas separation processes for CO2 capture from cement kiln flue gas. Int. J. Greenhouse Gas Control 24, 78–86 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Special project for marine economy development of Guangdong (six marine industries) (GDNRC [2022] 46), Key Research & Development Program of Guangzhou (No.202206050002, 202206050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Lang, X., Fan, S., Li, G., Wang, Y. (2024). Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization. In: Sun, B., Sun, J., Wang, Z., Chen, L., Chen, M. (eds) Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering. DWOG-Hyd 2023. Lecture Notes in Civil Engineering, vol 472. Springer, Singapore. https://doi.org/10.1007/978-981-97-1309-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1309-7_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1308-0

  • Online ISBN: 978-981-97-1309-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics