Skip to main content

Hydrogen Storage in Double Structure Hydrates with SF6 and TBAB Presence

  • Conference paper
  • First Online:
Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering (DWOG-Hyd 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 472))

Included in the following conference series:

  • 104 Accesses

Abstract

Hydrogen (H2) is a promising clean energy source for high energy density and clean combustion products. Hydrogen storage and transport are bottlenecks of the utilization of hydrogen energy. Gas hydrates could store hydrogen molecules at moderate temperatures and pressures, offering a technology of safe, cheap hydrogen storage. However, low hydrogen storage is a major problem in developing large-scale hydrate-based hydrogen storage. In this study, in order to increase the hydrogen storage capacity, we use Sulphur hexafluoride (SF6), which can form sII hydrates, and tetrabutylammonium bromide (TBAB), which forms semiclathrate hydrates, to construct a double structure hydrate storing hydrogen. The experimental temperature was set at 274 K, and the H2 pressure was around 20 MPa. The concentration of TBAB solution ranged from 0 wt% to 40 wt%. The highest H2 storage appeared at 5 wt% of TBAB with 20 wt% SF6. The capacity of H2 reached 32 V/V (about 0.324 wt%), which is an increase of 15% compared with no TBAB added. This is due to the fact that in the early stage of hydrate formation, TBAB first form semiclathrate hydrate with water, which increases the nucleation site of sII hydrate. The coupling structure of sII and semiclathrate hydrates increases the hydrogen storage. However, as the TBAB increases, it is easy to form larger particles of TBAB hydrates. This process expends a large number of water molecules, which decrease the formation of sII hydrates, and lower the H2 storage. Raman spectra of samples with TBAB revealed that the Raman characteristic peaks of SF6 and H2 increased towards higher wave numbers compared with samples without TBAB. This showed that the introduction of TBAB increased the binding energy of the hydrate cages, enhancing the hydrogen hydrate stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Momirlan, M., Veziroglu, T.N.: Current status of hydrogen energy. Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002)

    Article  Google Scholar 

  2. Hoffman, K., Reilly, J., Salzano, F., et al.: Metal hydride storage for mobile and stationary applications. Int. J. Hydrogen Energy 1(2), 133–151 (1976)

    Article  Google Scholar 

  3. Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978)

    Article  Google Scholar 

  4. Yadav, M., Xu, Q.: Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5(12), 9698 (2012)

    Article  Google Scholar 

  5. Chen, S., Wang, Y., Lang, X., et al.: Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure. Energy 268, 126638 (2023)

    Article  Google Scholar 

  6. Mao, W.L., Mao, H.: Hydrogen storage in molecular compounds. Proc. Natl. Acad. Sci. 101(3), 708–710 (2004)

    Article  Google Scholar 

  7. Zhang, Y., Bhattacharjee, G., Kumar, R., et al.: Solidified hydrogen storage (solid-hystore) via clathrate hydrates. Chem. Eng. J. 431, 133702 (2022)

    Article  Google Scholar 

  8. Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)

    Article  Google Scholar 

  9. Hashimoto, S., Sugahara, T., Sato, H., et al.: Thermodynamic stability of H2+ tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions. J. Chem. Eng. Data 52(2), 517–520 (2007)

    Article  Google Scholar 

  10. Chen, Y., Takeya, S., Sum, A.K.: Topological dual and extended relations between networks of clathrate hydrates and Frank-Kasper phases. Nature Commun. 14(1) (2023)

    Google Scholar 

  11. Liu, H., Zhan, S., Li, R., et al.: High-efficiency natural-gas storage method involving formation of gas hydrate in water/oil-cyclopentane emulsion. Chem. Eng. J. 400, 125369 (2020)

    Article  Google Scholar 

  12. Yang, M., Jing, W., Zhao, J., et al.: Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF+TBAB). Energy 106, 546–553 (2016)

    Article  Google Scholar 

  13. Zhang, J., Li, Y., Yin, Z., et al.: Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 467, 143459 (2023)

    Article  Google Scholar 

  14. Mahmoudi, B., Naeiji, P., Varaminian, F.: Study of tetra-n-butylammonium bromide and tetrahydrofuran hydrate formation kinetics as a cold storage material for air conditioning system. J. Mol. Liq. 214, 96–100 (2016)

    Article  Google Scholar 

  15. Sun, Z., Dai, M., Zhu, M., et al.: Improving THF hydrate formation in the presence of nonanoic acid. J. Mol. Liq. 299, 112188 (2020)

    Article  Google Scholar 

  16. Sugahara, T., Haag, J.C., Prasad, P.S.R., et al.: Increasing hydrogen storage capacity using tetrahydrofuran. J. Am. Chem. Soc. 131(41), 14616–14617 (2009)

    Article  Google Scholar 

  17. Lu, H., Wang, J., Liu, C., et al.: Multiple H2 occupancy of cages of clathrate hydrate under mild conditions. J. Am. Chem. Soc. 134(22), 9160–9162 (2012)

    Article  Google Scholar 

  18. Park, D., Lee, B.R., Sa, J., et al.: Gas-hydrate phase equilibrium for mixtures of sulfur hexafluoride and hydrogen. J. Chem. Eng. Data 57(5), 1433–1436 (2012)

    Article  Google Scholar 

  19. Chen, S., Wang, Y., Lang, X., et al.: Phase equilibrium of hydrogen clathrate hydrates with Propylene Oxide and 1,2-Epoxycyclopentane. J. Chem. Eng. Data 68(5), 1184–1190 (2023)

    Article  Google Scholar 

  20. Strobel, T.A., Koh, C.A., Sloan, E.D.: Hydrogen storage properties of clathrate hydrate materials. Fluid Phase Equilib.Equilib. 261(1–2), 382–389 (2007)

    Article  Google Scholar 

  21. Veluswamy, H.P., Yew, J.C., Linga, P.: New hydrate phase equilibrium data for two binary gas mixtures of hydrogen and propane coupled with a kinetic study. J. Chem. Eng. Data 60(2), 228–237 (2015)

    Article  Google Scholar 

  22. Zhdanov, R.K., Gets, K.V., Belosludov, R.V., et al.: Theoretical modeling of the thermodynamic properties and the phase diagram of binary gas hydrates of argon and hydrogen. Fluid Phase Equilib.Equilib. 434, 87–92 (2017)

    Article  Google Scholar 

  23. Dellis, D., Samios, J.: Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib.Equilib. 291(1), 81–89 (2010)

    Article  Google Scholar 

  24. Lee, B.R., Lee, J.D., Lee, H.J., et al.: Surfactant effects on SF6 hydrate formation. J. Colloid Interface Sci. 331(1), 55–59 (2009)

    Article  Google Scholar 

  25. Futera, Z., Celli, M.: Vibrational modes of hydrogen hydrates: a first-principles molecular dynamics and Raman spectra study. J. Phys. Chem. C 121(7), 3690–3696 (2017)

    Article  Google Scholar 

  26. Lu, Q., He, X., Hu, W., et al.: Stability, vibrations, and diffusion of hydrogen gas in clathrate hydrates: insights from Ab initio calculations on condensed-phase crystalline structures. J. Phys. Chem. C 123(19), 12052–12061 (2019)

    Article  Google Scholar 

  27. Trueba, A.T., Radović, I.R., Zevenbergen, J.F., et al.: Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen–tetrabutylammonium bromide semi-hydrates. Int. J. Hydrogen Energy 37(7), 5790–5797 (2012)

    Article  Google Scholar 

  28. Saikia, T., Patil, S., Sultan, A.: Hydrogen hydrate promoters for gas storage—a review. Energies 16(6), 2667 (2023)

    Article  Google Scholar 

  29. Chazallon, B., Ziskind, M., Carpentier, Y., et al.: CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration. J. Phys. Chem. B 118(47), 13440–13452 (2014)

    Article  Google Scholar 

  30. Sa, J., Kwak, G., Han, K., et al.: Gas hydrate inhibition by perturbation of liquid water structure. Sci. Rep. 5(1) (2015)

    Google Scholar 

  31. Lo, C., Zhang, J., Somasundaran, P., et al.: Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules. J. Phys. Chem. Lett. 1(18), 2676–2679 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

We are thankful to the Key Research & Development Program of Guangzhou (No. 202206050001, 202206050002), the National Natural Science Foundation of China (51876069 and 21736005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wang, Y., Fan, S., Lang, X., Li, G. (2024). Hydrogen Storage in Double Structure Hydrates with SF6 and TBAB Presence. In: Sun, B., Sun, J., Wang, Z., Chen, L., Chen, M. (eds) Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering. DWOG-Hyd 2023. Lecture Notes in Civil Engineering, vol 472. Springer, Singapore. https://doi.org/10.1007/978-981-97-1309-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1309-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1308-0

  • Online ISBN: 978-981-97-1309-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics