Skip to main content

Numerical Simulation of Hydrate Particle Deposition in Reduced-Diameter Pipes Based on an Improved Model

  • Conference paper
  • First Online:
Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering (DWOG-Hyd 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 472))

Included in the following conference series:

  • 87 Accesses

Abstract

High-pressure and low-temperature conditions for hydrate production are highly prone to occur during deep-water development, which may cause serious hydrate deposition problems. Current studies on hydrate deposition have mainly focused on through-diameter conditions, and relatively few studies have been conducted for reduced-diameter conditions. In this paper, a hydrate deposition model considering hydrate particle-fluid-pipe wall interaction is established based on the adhesion and rebound criteria of hydrate particles. The effects of important parameters on the deposition characteristics of micron-sized hydrate particles are investigated, and the deposition mechanism of hydrate in the reduced-diameter pipe is revealed. The results of the study can provide a valuable reference for the study of hydrate flow assurance in deep water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, J., He, J., Lv, X., Ge, K., Cheng, C., Dong, H.: Numerical analysis of the gas recovery performance in hydrate reservoirs with various parameters by stepwise depressurization. J. Pet. Sci. Eng. 203, 108670 (2021). https://doi.org/10.1016/j.petrol.2021.108670

    Article  Google Scholar 

  2. Koh, C.A., Sum, A.K., Sloan, E.D.: State of the art: natural gas hydrates as a natural resource. J. Nat. Gas Sci. Eng. 8, 132–138 (2012). https://doi.org/10.1016/j.jngse.2012.01.005

    Article  Google Scholar 

  3. Zbib, H., Ebrahimi, M., Ein-Mozaffari, F., Lohi, A.: Hydrodynamic behavior of a 3-D liquid-solid fluidized bed operating in the intermediate flow regime – application of stability analysis, coupled CFD-DEM, and tomography. Ind. Eng. Chem. Res. 57 (2018). https://doi.org/10.1021/acs.iecr.8b03369

  4. Wang, S., Luo, K., Hu, C., Fan, J.: Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Ind. Eng. Chem. Res. 57, 6774–89 (2018). 10/gprwcz

    Google Scholar 

  5. De Almeida, V., Serris, E., Lavalle, G., Cameirão, A., Herri, J.-M., Abadie, E., et al.: Mechanisms of hydrate blockage in oil-water dispersions based on flow loop experiments. Chem. Eng. Sci. 273, 118632 (2023). https://doi.org/10.1016/j.ces.2023.118632

    Article  Google Scholar 

  6. Deng, X., Feng, J., Pan, S., Wang, Z., Zhang, J., Chen, W.: An improved model for the migration of fluids caused by hydrate dissociation in porous media. J. Pet. Sci. Eng. 188, 106876 (2020). https://doi.org/10.1016/j.petrol.2019.106876

    Article  Google Scholar 

  7. Zhang, J., Wang, Z., Liu, S., Zhang, W., Yu, J., Sun, B.: Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety. Appl. Energy 253, 113521 (2019). https://doi.org/10.1016/j.apenergy.2019.113521

    Article  Google Scholar 

  8. Yang, J., Xu, Q., Liu, Z., Shi, L., Lei, T., Luo, K.H.: Upscaling methane hydrate dissociation kinetic model during depressurisation. Chem. Eng. Sci. 275, 118742 (2023). https://doi.org/10.1016/j.ces.2023.118742

    Article  Google Scholar 

  9. Liu, Z., Chen, L., Wang, Z., Gao, Y., Wang, J., Yu, C., et al.: Hydrate phase equilibria in natural sediments: inhibition mechanism and NMR-based prediction method. Chem. Eng. J. 452, 139447 (2022). https://doi.org/10.1016/j.cej.2022.139447

    Article  Google Scholar 

  10. Nicholas, J.W., Koh, C.A., Sloan, E.D.: A preliminary approach to modeling gas hydrate/ice deposition from dissolved water in a liquid condensate system. AIChE J. 55, 1889–1897 (2009). https://doi.org/10.1002/aic.11921

    Article  Google Scholar 

  11. Liu, N., Sun, Y., Wang, C., Yang, L., Liu, Z.: An investigation on the variation of induction process in natural gas hydrate formation influenced by multiphase flow in a visual flow loop. Chem. Eng. Sci. 281, 119114 (2023). https://doi.org/10.1016/j.ces.2023.119114

    Article  Google Scholar 

  12. Pillers, R.A., Heindel, T.J.: Dynamic visualization of hydrate formation using X-ray imaging. J. Pet. Sci. Eng. 200, 108334 (2021). https://doi.org/10.1016/j.petrol.2020.108334

    Article  Google Scholar 

  13. Liu, Z., Zheng, J., Wang, Z., Gao, Y., Sun, B., Liao, Y., et al.: Effect of clay on methane hydrate formation and dissociation in sediment: implications for energy recovery from clayey-sandy hydrate reservoirs. Appl. Energy 341, 121064 (2023). https://doi.org/10.1016/j.apenergy.2023.121064

    Article  Google Scholar 

  14. Aman, Z.M., et al.: Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling. J. Nat. Gas Sci. Eng. 35, 1490–1498 (2016). https://doi.org/10.1016/j.jngse.2016.05.015

    Article  Google Scholar 

  15. Aspenes, G., Dieker, L.E., Aman, Z.M., Høiland, S., Sum, A.K., Koh, C.A., et al.: Adhesion force between cyclopentane hydrates and solid surface materials. J. Colloid Interface Sci. 343, 529–536 (2010). https://doi.org/10.1016/j.jcis.2009.11.071

    Article  Google Scholar 

  16. Zhang, J., Wang, Z., Sun, B., Sun, X., Liao, Y.: An integrated prediction model of hydrate blockage formation in deep-water gas wells. Int. J. Heat Mass Transf. 140, 187–202 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.039

    Article  Google Scholar 

  17. Aman, Z.M., et al.: Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling. J. Nat. Gas Sci. Eng. (2016). https://doi.org/10.1016/j.jngse.2016.05.015

  18. Rao, I., Sloan, E.D., Koh, C.A., Sum, A.K.: Laboratory experiments & modeling for hydrate formation and deposition from water saturated gas systems (n.d.)

    Google Scholar 

  19. Rao, I., Koh, C.A., Sloan, E.D., Sum, A.K.: Gas hydrate deposition on a cold surface in water-saturated gas systems. Ind. Eng. Chem. Res. 52, 6262–6269 (2013). 10/f4x6gm

    Google Scholar 

  20. Di Lorenzo, M., Aman, Z., Soto, G., Johns, M., Kozielski, K., May, E.: Hydrate formation in gas-dominant systems using a single-pass flowloop. Energy Fuels 28, 3043–3052 (2014). https://doi.org/10.1021/ef500361r

    Article  Google Scholar 

  21. Majid, A., Vijayamohan, P., Chaudhari, P., Sloan, E.D., Volk, M.: understanding gas hydrate growth in partially dispersed and water continuous systems from flowloop tests. In: Offshore Technology Conference (2015). 10/gprt4c

    Google Scholar 

  22. Aman, Z.M., Joshi, S.E., Sloan, E.D., Sum, A.K., Koh, C.A.: Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties. J. Colloid Interface Sci. 376, 283–288 (2012). https://doi.org/10.1016/j.jcis.2012.03.019

    Article  Google Scholar 

  23. Aman, Z.M., Brown, E.P., Sloan, E.D., Sum, A.K., Koh, C.A.: Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion. Phys. Chem. Chem. Phys. 13, 19796–19806 (2011). https://doi.org/10.1039/C1CP21907C

    Article  Google Scholar 

  24. Zhang, J., et al.: Experimental study and prediction model for hydrate plugging formation in single-pass gas-dominated pipes with diameter reduction. SPE J., 1–19 (2021). https://doi.org/10.2118/209189-PA

  25. Wang, Z., Ma, N., Zhang, J., Pei, J., Tong, S., Sun, B.: Numerical modeling of hydrate particle deposition in pipes with diameter reduction. SPE J. 28, 522–539 (2023). https://doi.org/10.2118/212309-PA

    Article  Google Scholar 

  26. Inc. A. Ansys Fluent 14 User’s Guide (2011)

    Google Scholar 

  27. Norourzi, H.R., Zarghami, R., Mostoufi, N., Sotudeh-Gharebagh, R.: Coupled CFD-Dem Modeling (2016)

    Google Scholar 

  28. Wang, S., Shen, Y.: Coarse-grained CFD-DEM modelling of dense gas-solid reacting flow. Int. J. Heat Mass Transf. 184, 122302 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122302

    Article  Google Scholar 

  29. Cundall, P.A., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 30, 331–336 (2008). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

Download references

Acknowledgement

The work was supported by the National Natural Science Foundation of China (51991363, U21B2069), the CNPC’s Major Science and Technology Projects (ZD2019-184-003), the Major Scientific and Technological Innovation Projects in Shandong Province (2022CXGC020407), and the Natural Science Foundation of Qingdao (23-2-1-95-zyyd-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, N., He, J., Li, H., Zhang, J., Liu, P., Wang, Z. (2024). Numerical Simulation of Hydrate Particle Deposition in Reduced-Diameter Pipes Based on an Improved Model. In: Sun, B., Sun, J., Wang, Z., Chen, L., Chen, M. (eds) Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering. DWOG-Hyd 2023. Lecture Notes in Civil Engineering, vol 472. Springer, Singapore. https://doi.org/10.1007/978-981-97-1309-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1309-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1308-0

  • Online ISBN: 978-981-97-1309-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics