Skip to main content

Manganese Contaminant: Revolutionizing In-Situ Microbial-Assisted Remediation Approach

  • Chapter
  • First Online:
Harnessing Microbial Potential for Multifarious Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 66 Accesses

Abstract

Manganese is one of the most prevalent elements in the earth’s crust, deposited in the form of different oxides. Strategically, it is an important metal that has augmented industrial applications. Being a cofactor of multiple metabolic enzymes, the Mn (II) ion exhibits a crucial role as an essential trace element of all living organisms. Rapid industrialization, mining, mineral processing, and further anthropogenic activities imposed severe consequences on the generation of a large amount of manganese mining waste product. The inappropriate supervision and unprocessed dumping of these Mn waste products have caused a significant threat to the ecosystem and public health. Hence, remediation is required to avoid heavy metal mobilization into environmental segments and facilitate their extraction. At first, this chapter introduces the essentiality, toxicity, and regulation of Mn. Various Mn-solubilizing microorganisms mediated In-situ approaches to bioremediation, viz., microbially induced carbonate precipitation (MICP), biomineralization, biosorption, bioaccumulation, bio-oxidation, bioleaching, biomining, bioventing, disparaging, biostimulation, and bioaugmentation, are discussed in detail. To promote bioremediation efficiency, the combination of different techniques is preferred. Finally, we propose the cost-efficient and eco-friendly future approach of Mn bioremediation without producing any secondary pollutants and, conclusively, providing a scientific basis for the microbial remediation performance for Mn pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abayomi OO, Olugbenga OS, John Olatunji A, Farag Twibi M, Alftessi SA (2017) A bioleaching regeneration and recovery of spent refinery catalyst using adapted microorganisms. J Adv Chem Eng 07. https://doi.org/10.4172/2090-4568.1000158

  • Acharya C, Kar RN, Shukla LB, Misra VN (2004) Fungal leaching of manganese ore. Trans Indian Inst Met 57(5)

    Google Scholar 

  • Acharya C, Shukla LB, Misra VN (2020) Environmentally-friendly bioleaching of manganese from pyrolusite: performance and mechanisms. J Clean Prod 249

    Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of Heavy Metals. Res J Chem Environ 7(4)

    Google Scholar 

  • Alexander DE (1999) Bioaccumulation, bioconcentration. Biomagnification. Encyclop Earth Sci 43–44. https://doi.org/10.1007/1-4020-4494-1_31

  • Ali I, Peng C, Khan ZM, Naz I, Sultan M, Ali M, Abbasi IA, Islam T, Ye T (2019) Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. J Environ Manage 230:128–150. https://doi.org/10.1016/j.jenvman.2018.09.073

    Article  Google Scholar 

  • Alina P (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, Soil Pollut 231

    Google Scholar 

  • Alluri H, Srinivasa RR, Vijaya SS, Jayakumar SB, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotech 6:2924–2931

    Article  Google Scholar 

  • Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS) Neurotoxicology. 20:173–180

    Google Scholar 

  • Asim H, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN (2022) In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air – a review. Chemosphere 289:133252

    Article  Google Scholar 

  • MSh, Bafghi, Zakeri A, Ghasemi Z, Adeli M (2008) Reductive dissolution of manganese ore in sulfuric acid in the presence of iron metal. Hydrometallurgy 90:207–212. https://doi.org/doi.org/10.1016/j.hydromet.2007.07.003

    Google Scholar 

  • Bai Y, Zhou Y, Gong J (2021) Physiological mechanisms of the tolerance response to manganese stress exhibited by pinus massoniana, a candidate plant for the phytoremediation of Mn-contaminated soil. Environ Sci Pollut Res 28:45422–45433. https://doi.org/10.1007/s11356-021-13912-8

  • Baik WY, Bae JH, Cho KM, Hartmeier W (2002) Biosorption of heavy metals using whole mold mycelia and parts thereof. Biores Technol 81:167–170

    Article  Google Scholar 

  • Baoying W, Kano N (2015) Adsorption of heavy metal onto the materials prepared by biomass. Biomass Production Uses

    Google Scholar 

  • Baragaño D, Forján R, Welte L, Gallego JL (2020) Nanoremediation of as and metals polluted soils by means of graphene oxide nanoparticles. Scient Reports 10. https://doi.org/10.1038/s41598-020-58852-4

  • Barboza NR, Guerra-Sá R, Leão VA (2016) Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biotechnol 91:2733–2739

    Article  Google Scholar 

  • Bohu T, Santelli CM, Akob DM, Neu TR, Ciobota V, Rösch P, Popp J, Nietzsche S, Küsel K (2015) Characterization of ph dependent mn(ii) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium Australicum T-G1. Front Microbiol 6

    Google Scholar 

  • Buchman AR (2014) Manganese. In Modern Nutrition in Health and Disease. Baltimore, MD, Lippincott Williams & Wilkins 11:238–244

    Google Scholar 

  • Burgstaller, W. and Schinner, F. “Leaching of Metals with fungi.“ Journal of Biotechnology, vol.27, pp.91–116(1993).

    Google Scholar 

  • Acharya C et al. (2002) Bioleaching of low-grade manganese ore with penicillium citrinum. Europ J Min Proc Environ Prot 3:1303–0868, 2:197–204

    Google Scholar 

  • Cao JG, Li XM, Ouyang YZ, Zheng W, Yang Q (2011) Mn waste water treatment: biosorption of Mn by Serratia sp. J Environ Prot Ecol 12:661–666

    Google Scholar 

  • Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci (landmark Ed) 23:1655–1679

    Article  Google Scholar 

  • Chen X, Zhang D, Larson SL et al (2021) Microbially induced carbonate precipitation techniques for the remediation of heavy metal and trace element-polluted soils and water. Water Air Soil Pollut 232:268

    Article  Google Scholar 

  • Chernikova AA, Tsoglin LN, Markelova AG, Zorin SN (2006) Capacity of spirulina platensis to accumulate manganese and its distribution in cell. Russ J Plant Physiol 53(6):800–806. https://doi.org/10.1134/S1021443706060112

    Article  Google Scholar 

  • Cho G, Park Y, Hong YK, Ha DH (2019) Ion exchange: an advanced synthetic method for complex nanoparticles. Nano Converg 6:39

    Google Scholar 

  • Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V (2012) Development of microbial geotechnology in Singapore. Geo-Frontiers 2011:4070–4078. https://doi.org/10.1061/41165(397)416.ISBN97807844116

    Article  Google Scholar 

  • Chugh A, Kumar L, Shah MP, Bharadvaja N (2022) Algal bioremediation of heavy metals: an insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 7. https://doi.org/10.1016/j.nexus.2022.100129

  • Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonc¸alves FM (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7(3)

    Google Scholar 

  • Cuaxinque-Flores G, Luis Aguirre-Noyola J, Hernandez-Flores G, Martinez-Romero E, Romero-Ramirez Y, Talavera Mendoza O (2020) Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: an in vitro study and application to sulfide-bearing tailings. Sci. Total Environ 724:138124

    Google Scholar 

  • Hariprasad D et al. (2007) Leaching of manganese ores using sawdust as a reductant. Miner. Eng

    Google Scholar 

  • Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102:7381–7387

    Article  Google Scholar 

  • Das AP, Ghosh S, Mohanty S, Shukla LB (2015) Advances in manganese pollution and its bioremediation. Environ Microb Biotechnol Soil Biol 45:313–327. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-19018-1_16

  • De M, Willem Kim V et al. (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechn 97(3):1335–1347

    Google Scholar 

  • De W Muynck, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Google Scholar 

  • Deenan S, Yen-Peng T (2006) Use of adapted aspergillus niger in the bioleaching of spent refinery processing catalyst. J Biotechnol 211:62–74

    Google Scholar 

  • Dhami NK (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol 23(5):707–714

    Google Scholar 

  • Diaconu LI, Covaliu-Mierlă CI, Păunescu O, Covaliu LD (2023) Phytoremediation of wastewater containing lead and manganese ions using Algae. MDPI Biol 12(6):773. https://doi.org/10.3390/biology12060773

  • Diaconu LI, Covaliu-Mierlă CI, Păunescu O, Covaliu LD (2023) Phytoremediation of wastewater containing lead and manganese ions using Algae. Biology 12(6):773. https://doi.org/10.3390/biology12060773

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BA (2008) Direct identification of a bacterial Mn (II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1532

    Article  Google Scholar 

  • Baglin EG et al. (1992) Solubilization of manganese from ores by heterotrophic micro-organisms. Hydrometallurgy

    Google Scholar 

  • Ehrlich Henry Lutz, Newman Dianne K (2008) Geomicrobiology. CRC Press, pp 347–426.. ISBN 978-0-8493-7907-9

    Google Scholar 

  • El-Naggar NEE, Hamouda R, Mousa I (2018) Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci Reports 8(1). https://doi.org/10.1038/s41598-018-31660-7

  • Emerson D, Ghiorse WC (1993) Ultrastructure and chemical-composition of the sheath of Leptothrix discophora SP-6. J Bacteriol 175:7808–7818

    Article  Google Scholar 

  • Equeenuddin SM, Tripathy S, Sahoo P, Panigrahi M (2013) Metal behavior in sediment associated with acid mine drainage stream: role of pH. J Geochem Explor 124:230–237. https://doi.org/10.1016/j.gexplo.2012.10.010

    Article  Google Scholar 

  • Forrez I, Carballa M, Verbeken K, Vanhaecke L, Ternes T, Boon N, Verstraete W (2010) Diclofenac oxidation by biogenic Mn oxides. Environ Sci Technol 44:3449–3454. https://doi.org/10.1021/es9027327

    Article  Google Scholar 

  • Francis CA, Tebo BM (2002) Enzymatic Mn (II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  Google Scholar 

  • Gomeze Ramiraze M et al. (2020) Acidithiobacillus thiooxidans DSM 26636: an alternative for the bioleaching of metallic burrs. Catalysts 1230, 10(11). https://doi.org/10.3390/catal10111230

  • Guechi E, Benabdesselam S (2020) Removal of cadmium and copper from aqueous media by biosorption on cattail (Typha angustifolia) leaves: Kinetic and isotherm studies. Desalin Water Treat 173:367–382. https://doi.org/10.5004/dwt.2020.24768

    Article  Google Scholar 

  • Hakala M, Rantamaki S, Puputti EM, Tyystjarvi T, Tyystjarvi E (2006) Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J Exp Bot 57:1809–1816

    Article  Google Scholar 

  • Hasan MR, Khan MZH, Khan M, Aktar S, Rahman M, Hossain F (2016) Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Environ Sci 2(1):1–12. https://doi.org/10.1080/23311843.2016.1140001

    Article  Google Scholar 

  • Hatayama K (2020) Mn Carbonate precipitation induced by calcite-forming bacteria. Geomicrobiol J 37:603–609

    Article  Google Scholar 

  • Hazaimeh M (2023) Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. Environ Sci Poll Res

    Google Scholar 

  • Hojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36(3):299. https://doi.org/doi.org/10.1016/j.envint.2009.12.001

    Google Scholar 

  • Holguera JG, Etui ID, Jensen LHS, Peña J (2018) Contaminant loading and competitive access of Pb, Zn and Mn (III) to vacancy sites in biogenic MnO2. Chem Geol 502:76–87. https://doi.org/10.1016/j.chemgeo.2018.10.020

    Article  Google Scholar 

  • Howe P, Malcolm H (2004) Manganese, and its compounds: environmental aspects. World Health Organization. ISBN 978-92-4-153063-7. 4

    Google Scholar 

  • Hsieh SI, Castruita M, Malasarn D, Pellegrini M (2013) The proteome of copper, iron, zinc, and manganese micronutrient deficiency in chlamydomonas reinhardtii. Mol Cell Proteomics 12(1):65–86. https://doi.org/10.1074/mcp.M112.021840

    Article  Google Scholar 

  • https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.00300/full

  • https://www.mountsinai.org/health-library/supplement/manganese

  • https://www.uobabylon.edu.iq/eprints/publication_5_10694_432.pdf

  • https://pixabay.com/vectors/bacterium-nucleoid-cytoplasm-cell-307660/, CCBY-SA

  • https://cdn.pixabay.com/photo/2014/04/03/00/40/tree-309046_1280.png, CCBY-SA

  • https://www.biorender.com/

  • Huang HM, Zhao YL, Xu ZG, Ding Y, Zhou XM, Dong M (2020) A high Mn (II)-tolerance strain, Bacillus thuringiensis HM7, isolated from Mn ore and its biosorption characteristics. PeerJ 8:24

    Article  Google Scholar 

  • Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V (2011) Development of microbial geotechnology in Singapore. Geo-Frontiers, American Society of Civil Engineers, Dallas, Texas, United States, pp 4070–4078

    Google Scholar 

  • Mitchell JK, Carlos Santamarina J (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233

    Google Scholar 

  • Jakkapong T et al. (2019) Remediation of manganese-contaminated coal-mine water using bio-sorption and bio-oxidation by the microalga pediastrum duplex (AARLG060): a laboratory-scale feasibility study. Front Microbiol Sec Microbiotech 10. https://doi.org/10.3389/fmicb.2019.02605

  • Johnson K et al (2015) Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nat Commun 6:7628

    Article  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn (II) and Fe (II) containing groundwater: Kinetic considerations and product characterization. Water Res 38:1922–1932

    Article  Google Scholar 

  • Keen CL, Zidenberg-Cherr S (1993) Manganese. Food Technology and Nutrition, Academic Press Copyright, Encyclopaedia of Food Science

    Google Scholar 

  • Kirschvink JL (1992) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52. (1992), ISBN 0521366151

    Google Scholar 

  • Koul A, Sharma K, Shah MP (2022) Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environ Technol Innov 25:102040. https://doi.org/10.1016/j.eti.2021.102040

    Article  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Thomas T, David AA, Ahmed M (2017) A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ Sci Pollut Res 24:10652–10661. https://doi.org/10.1007/s11356-017-8752-8

    Article  Google Scholar 

  • Learman DR, Wankel SD, Webb SM, Martinez N, Madden AS, Hansel CM (2011) Coupled biotic–abiotic Mn (II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim Cosmochim Acta 75:6048–6063

    Article  Google Scholar 

  • Lee Y, Tebo BM (1994) Cobalt (II) oxidation by the marine manganese (II)-oxidizing bacillus sp. Strain SG-1. Applied and Environmental Microbiology, American Society for Microbiology, pp 2949–2957

    Google Scholar 

  • Lei et al (2018) Application of reverse osmosis in purifying drinking water. https://www.researchgate.net/publication/325559205_Application_of_reverse_osmosis_in_purifying_drinking_water/citation/download

  • Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J (2020) Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of Mn for bioleaching of heavy metal contaminated soils. Chemosphere 241:125039. https://doi.org/10.1016/j.chemosphere.2019.125039

    Article  Google Scholar 

  • Li L, Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev

    Google Scholar 

  • Li YC, Xu Z, Ma HQ, Hursthouse AS (2019) Removal of Mn (II) from acid mine wastewater: a review of the challenges and opportunities with special emphasis on Mn-oxidizing bacteria and microalgae. Water 11:2493

    Google Scholar 

  • Loneragan JF (1988) Distribution and movement of manganese in plants. In Manganese in soils and plants, pp 113–124

    Google Scholar 

  • Lv MZ, Chen MX, Zhang R, Zhang, Liu et al. (2020) Mn is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res 30:966–979

    Google Scholar 

  • Mangood AH, Abdelfattah I, El-Saied FA, Mansour MZ (2022) Removal of heavy metals from polluted aqueous media using berry leaf. Int J Environ Anal Chem 1–17. https://doi.org/10.1080/03067319.2021.1928102

  • Marshall KC (1979) Biogeochemistry of manganese minerals. In Biogeochemical cycling of mineral forming elements (Trudinger, P.A. and Swaine, D.J. Eds.), Elsevier, Amsterdam. Chapter 5, 253–292

    Google Scholar 

  • Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, Martins AD, Akinyemi A, Aranoff N et al. (2020) The effects of Mn overexposure on brain health. Neurochem Int 135104688. https://doi.org/10.1016/j.neuint.2020.104688

  • Michalak M, Mironiuk M, Godlewska K, Trynda J, Marycz K (2020) Arthrospira (Spirulina) platensis: an effective biosorbent for nutrients. Process Biochem 88:129–138. https://doi.org/10.1016/j.procbio.2019.10.004

    Article  Google Scholar 

  • Michalke B, Fernsebner K (2014) New insights into manganese toxicity and speciation. J Trace Elem Med Biol 28:106–116

    Article  Google Scholar 

  • Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial Mn oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  Google Scholar 

  • Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microb 111(2):338–349. https://doi.org/10.1111/j.1365-2672.2011.05065. x.PMID21624021

  • Nadaska G, Lesny J, Michalik I (2012) Environmental aspect of manganese chemistry, 1–16

    Google Scholar 

  • Narayanan M et al. (2020) In-Situ and Ex-Situ phycoremediation competence of innate scenedesmus Sp. On polluted river water, 235. Date of Publication. https://doi.org/10.21203/rs.3.rs-95696/v1

  • Nealson KH (2006) National Research Council (NRC). Recommended dietary allowances, 10th.“ Washington DC: National Academic Press, 1989. Manganese-oxidizing bacteria. Prokaryotes 5:222–231

    Google Scholar 

  • Ngwenya S, Guyo U, Zinyama NP, Chigondo F, Nyamunda BC, Muchanyereyi N (2019) Response surface methodology for optimization of Cd (II) adsorption from wastewaters by fabricated tartaric acid-maize tassel magnetic hybrid sorbent. Biointerface Res Appl Chem 3996–4005. https://doi.org/10.33263/briac94.996005

  • Nielsen FH (2012) Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements. In John W Erdman Jr. IAM, Steven H Zeisel (eds), Present Knowledge in Nutrition. 10th ed: Wiley-Blackwell, 586–607

    Google Scholar 

  • Noszczynska M, Lakomy K, Nowacki K, Piotrowska-Seget Z (2020) A high Mn-tolerant Pseudomonas sp. strain isolated from Metallurgical waste heap can be a tool for enhancing Mn removal from contaminated soil. Appl Sci 10:5717

    Google Scholar 

  • Nour E et al. (2022) Inhibition of antioxidant enzyme activities enhances carotenogenesis in microalga Dactylococcus dissociatus MT1. Front Bioeng Biotechnol Sec Industrial Biotechnol 10. https://doi.org/10.3389/fbioe.2022.1014604

  • Nurlliana I et al. (2017) Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web Conf 97(1):01023

    Google Scholar 

  • Oleksandr P et al. (2013) Electrospark method in galvanic wastewater treatment for heavy metal removal. J Appl Sci 15(10)

    Google Scholar 

  • Osmani M, Bani A, Hoxha B (2015) Heavy metals and ni phytoextractionin in the metallurgical area soils in Elbasan. Albanian J. Agric. Sci. 1:414

    Google Scholar 

  • Ozdemir S, Kilinc E, Nicolaus B, Poli A (2013) Resistance and bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus. Ann Microbiol 63:1379–1385

    Article  Google Scholar 

  • Pagnanelli F et al. (2004) Leaching of low-grade manganese ores by using nitric acid and glucose: optimization of the operating conditions. Hydrometallurgy 75, 1(4):157–167. https://doi.org/10.1016/j.hydromet.2004.07.007

  • Pande V, Pande S, Sati D et al. (2022) Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front Microbiol Sec Microbiotechn 13. https://doi.org/10.3389/fmicb.2022.824084

  • Post JE (1994) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–4345

    Article  Google Scholar 

  • Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M (2022) Biosorption of heavy metals by microorganisms: evaluation of different underlying mechanisms. Chemosphere 307:12. https://doi.org/10.1016/j.chemosphere.2022.135957

  • Quaing N, Lin Jin et al. (2021) Removal of Mn (II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. Environ Sci Pollut Res Int 28(24):31218–31229. https://doi.org/10.1007/s11356-021-12764-6

  • Rahhou A, Layachi M, Akodad M, El Ouamari N, Rezzoum NE (2023) The bioremediation potential of Ulva lactuca (Chlorophyta) causing green tide in marchica lagoon (NE Morocco, Mediterranean Sea): biomass, heavy metals, and health risk assessment. Water 15(7):1310. https://doi.org/10.3390/w15071310

    Article  Google Scholar 

  • Rivas J, Piña F, Araya M (2022) Heavy metal depuration steps for gracilaria chilensis in outdoor culture systems. Molecules 27(20):6832. https://doi.org/10.3390/molecules27206832

    Article  Google Scholar 

  • Rongrong Wu, Fangting YX, Li Chongjing S (2022) Manganese pollution and its remediation: a review of biological removal and promising combination strategies. Microorganisms. MDPI 10(12):2411. https://doi.org/10.3390/microorganisms10122411

  • Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 28:484–500

    Google Scholar 

  • Sharma B, Sarkar A, Singh P, Singh RP (2017) Agricultural utilization of biosolids: a review on potential effects on soil and plant grown. Waste Manag 64:117–132. https://doi.org/10.1016/j.wasman.2017.03.002

    Article  Google Scholar 

  • Sharma I. Trace metals in the environment—new approaches and recent advances bioremediation techniques for polluted environment: concept, advantages, limitations and prospects. https://doi.org/10.5772/intechopen.90453

  • Sharma P, Bano A et al (2018) Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Clean Chem Eng 2(11):667. https://doi.org/10.1016/j.clce.2022.100020

    Article  Google Scholar 

  • Silva RMP, Rodriguez AA, De Oca J, Moreno DC (2009) Biosorption of chromium, copper, Mn and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol 100:1533–1538. https://doi.org/10.1016/j.biortech.2008.06.057

    Article  Google Scholar 

  • Sinha MK, Purcell W (2019) Reducing agents in the leaching of manganese ores: a comprehensive review. Hydrometallurgy 187:168–186. https://doi.org/10.1016/j.hydromet.2019.05.021

    Article  Google Scholar 

  • Smythers AL, Perry NL, et al. (2019) Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions. Springer Algal Research, 43. https://doi.org/10.1016/j.algal.2019.101641

  • Srivastava V, de Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP (2016) Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biotechnol 15:677–696. https://doi.org/10.1007/s11157-016-9407-9

    Article  Google Scholar 

  • Su J, Bao P, Bai T, Deng L, Wu H, Liu F, He J, Cot A (2013) A multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS ONE 8(4):60573

    Article  Google Scholar 

  • Su JM, Deng L, Huang LB, Guo SJ, Liu F, He J (2014) Catalytic oxidation of Mn (II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res 56:304–313

    Article  Google Scholar 

  • Tabiason J et al (2016) Manganese removal from drinking water sources. Curr Pollut Reports 2:168–177

    Article  Google Scholar 

  • Tebo BM et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  Google Scholar 

  • Therdkiattikul N, Ratpukdi T, Kidkhunthod P, Chanlek N, Siripattanakul-Ratpukdi S (2020) Mn-contaminated groundwater treatment by novel bacterial isolates: kinetic study and mechanism analysis using synchrotron-based techniques. Sci Rep 10:12. https://doi.org/10.1038/s41598-020-70355-w

  • Vakilchap F et al (2016) Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Biores Technol 218:991–998. https://doi.org/10.1016/j.biortech.2016.07.059

    Article  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189

    Article  Google Scholar 

  • Van H, Marco Dutay Jean-C, Middag et al. (2016) Manganese in the world ocean: a first global model (PDF) . https://doi.org/10.5194/bg-2016-282

  • Varol M, Şen B (2010) Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA 92:1–10. https://doi.org/10.1016/j.catena.2011.11.011

    Article  Google Scholar 

  • Vivanov V, Chu J, Stabnikov V (2015) Basics of construction microbial biotechnology, in Biotechnologies and Biomimetics for Civil Engineering, pp 21–56, Springer International Publishing, Cham

    Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. Florida: CRC Press. ISBN 978–0849349171

    Google Scholar 

  • Wang D, Li H, Wei Z, Wang X, Hu F (2006) Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biol Fertil Soils 43(1):120–123

    Article  Google Scholar 

  • Xiong S, Li X, Liu P, Hao S, Hao F, Yin Z, Liu J (2018) Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low-cost reductant. Miner Eng 125:126–132

    Article  Google Scholar 

  • Xu ZG, Ding Y, Huang HM, Wu L, Zhao YL, Yang GY (2019) Biosorption characteristics of Mn (II) by Bacillus cereus Strain HM-5 Isolated from soil contaminated by Mn Ore. Pol J Environ Stud 28:463–472. https://doi.org/10.15244/pjoes/84838

    Article  Google Scholar 

  • Han Y et al. (2013) Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process. J Biosci Bioeng

    Google Scholar 

  • Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  Google Scholar 

  • Yin X, Zhang ZJ, Ma HY, Venkateswaran S, Hsiao BS (2020) Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: filtration and adsorption. Sep Purif Technol 242:116794

    Google Scholar 

  • Yin K, Wang QN, Lv M, Chen LX (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  Google Scholar 

  • Zapffe C (1933) The history of manganese in water supplies and methods for its removal. J Am Water Works Assoc 25(5):655–676

    Article  Google Scholar 

  • Zhang Y, Tang YK, Qin ZY, Luo PH, Ma Z, Tan MY, Kang HY, Huang ZN (2019) A novel Mn oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn (II) oxidization and biogenic Mn oxides generation. J Hazard Mater 367:539–545

    Article  Google Scholar 

  • Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic Mn oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139

    Article  Google Scholar 

  • Zhu G, Zhao Y, Cheng Z (2010) Thermal analysis and kinetic modeling of manganese oxide ore reduction using biomass straw as reductant. Hydrometallurgy 105:96–102

    Article  Google Scholar 

  • Zhu FK, Qu L, Fan WX, Qiao MY, Hao HL, Wang XJ (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199

    Google Scholar 

  • Zoni S, Bonettia G, Lucchinia R (2012) Olfactory functions at the intersection between environmental exposure to manganese and Parkinsonism. J Trace Elem Med Biol 26:179–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kamleshiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamleshiya, P. (2024). Manganese Contaminant: Revolutionizing In-Situ Microbial-Assisted Remediation Approach. In: Bala, K., Ghosh, T., Kumar, V., Sangwan, P. (eds) Harnessing Microbial Potential for Multifarious Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-1152-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1152-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1151-2

  • Online ISBN: 978-981-97-1152-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics