Skip to main content

Role of Genomics and Proteomics in Drug Discovery

  • Chapter
  • First Online:
Concepts in Pharmaceutical Biotechnology and Drug Development

Abstract

Genomics and proteomics are two powerful technologies that are revolutionizing the drug discovery process. Genomics is the study of the entire genome of an organism, including the DNA sequence and gene expression patterns. Proteomics is the study of all the proteins in an organism, including their structure, function, and interactions. Both genomics and proteomics can be used to identify new drug targets. A drug target is a molecule that is involved in the disease process. By understanding the molecular basis of disease, scientists can identify potential drug targets that can be modulated to treat the disease. This chapter provides an overview of the role of genomics and proteomics in drug discovery. The chapter begins by discussing the basics of genomics and proteomics. It then goes on to discuss how these technologies can be used to identify new drug targets, develop new drugs, and improve the safety and efficacy of existing drugs. The chapter also discusses the challenges and future directions of genomics and proteomics in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulmawjood B, Costa B, Roma-Rodrigues C, Baptista PV, Fernandes AR (2021) Genetic biomarkers in chronic myeloid leukemia: what have we learned so far? Int J Mol Sci 22(22):12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alchakee A, Ahmed M, Eldohaji L, Alhaj H, Saber-Ayad M (2022) Pharmacogenomics in psychiatry practice: the value and the challenges. Int J Mol Sci 23(21):13485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alföldi J, Lindblad-Toh K (2013) Comparative genomics as a tool to understand evolution and disease. Genome Res 23(7):1063–1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q (2020) Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21(1):1–6

    Article  Google Scholar 

  • Baloch AR, Feugang JM, Rodríguez-Osorio N (2023) Genomic and epigenomic applications in animal and veterinary sciences. Front Vet Sci 10:1167079

    Article  PubMed  PubMed Central  Google Scholar 

  • Berriman M, Lustigman S, McCarter JP (2007) Genomics and emerging drug discovery technologies. Expert Opin Drug Discov 2(sup1):S83–S89

    Article  CAS  PubMed  Google Scholar 

  • Blay V, Tolani B, Ho SP, Arkin MR (2020) High-throughput screening: today’s biochemical and cell-based approaches. Drug Discov Today 25(10):1807–1821

    Article  CAS  PubMed  Google Scholar 

  • Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369–378

    Article  CAS  PubMed  Google Scholar 

  • Bogatcheva E, Hanrahan C, Nikonenko B, De Los Santos G, Reddy V, Chen P, Barbosa F, Einck L, Nacy C, Protopopova M (2011) Identification of SQ609 as a lead compound from a library of dipiperidines. Bioorg Med Chem Lett 21(18):5353–5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnier M, Wuerzner G (2015) Drug adherence monitoring in clinical trials: a necessity for a correct assessment of the efficacy and safety of antihypertensive therapies. J Hypertens 33(12):2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Chahrour O, Cobice D, Malone J (2015) Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 113:2

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Jiang H, Cao Y, Wang Y, Hu Z, Zhu Z, Chai Y (2016) Drug target identification using network analysis: taking active components in Sini decoction as an example. Sci Rep 6(1):24245

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu CY, Miller SA (2019) Clinical metagenomics. Nat Rev Genet 20(6):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow SC, Shao J, Wang H, Lokhnygina Y (2017) Sample size calculations in clinical research. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Choy CT, Wong CH, Chan SL (2019) Embedding of genes using cancer gene expression data: biological relevance and potential application on biomarker discovery. Front Genet 9:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung CH, Levy S, Chaurand P, Carbone DP (2007) Genomics and proteomics: emerging technologies in clinical cancer research. Crit Rev Oncol Hematol 61(1):1–25

    Article  PubMed  Google Scholar 

  • Clark KM, Jenkins JL, Fedoriw N, Dumont ME (2017) Human CaaX protease ZMPSTE 24 expressed in yeast: structure and inhibition by HIV protease inhibitors. Protein Sci 26(2):242–257

    Article  CAS  PubMed  Google Scholar 

  • Codony-Servat J, Codony-Servat C, Cardona AF, Giménez-Capitán A, Drozdowskyj A, Berenguer J, Bracht JW, Ito M, Karachaliou N, Rosell R (2019) Cancer stem cell biomarkers in egfr-mutation–positive non–small-cell lung cancer. Clin Lung Cancer 20(3):167–177

    Article  CAS  PubMed  Google Scholar 

  • Cominetti O, Núñez Galindo A, Corthésy J, Oller Moreno S, Irincheeva I, Valsesia A, Astrup A, Saris WH, Hager J, Kussmann M, Dayon L (2016) Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry. J Proteome Res 15(2):389–399

    Article  CAS  PubMed  Google Scholar 

  • Corsi GI, Gadekar VP, Gorodkin J, Seemann SE (2022) CRISPRroots: on-and off-target assessment of RNA-seq data in CRISPR–Cas9 edited cells. Nucleic Acids Res 50(4):e20

    Article  CAS  PubMed  Google Scholar 

  • Daly AK (2013) Pharmacogenomics of adverse drug reactions. Genome Med 5:1–2

    Article  Google Scholar 

  • Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, Southall N, Hu X, Lal M, Mondal D, Ferrer M (2018) High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci Rep 8(1):8161

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean-Colomb W, Esteva FJ (2008) Her2-positive breast cancer: herceptin and beyond. Eur J Cancer 44(18):2806–2812

    Article  CAS  PubMed  Google Scholar 

  • Di Trani CA, Fernandez-Sendin M, Cirella A, Segués A, Olivera I, Bolaños E, Melero I, Berraondo P (2022) Advances in mRNA-based drug discovery in cancer immunotherapy. Expert Opin Drug Discov 17(1):41–53

    Article  PubMed  Google Scholar 

  • Doak BC, Norton RS, Scanlon MJ (2016) The ways and means of fragment-based drug design. Pharmacol Ther 167:28–37

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Li X, Niu Q, Mo X, Qui M, Ma T, Kuo CJ, Fu H (2020) Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J Mol Cell Biol 12(8):630–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F (2019) Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(4):e1554

    Article  PubMed  Google Scholar 

  • Duma N, Kothadia SM, Azam TU, Yadav S, Paludo J, Vera Aguilera J, Gonzalez Velez M, Halfdanarson TR, Molina JR, Hubbard JM, Go RS (2019) Characterization of comorbidities limiting the recruitment of patients in early phase clinical trials. Oncologist 24(1):96–102

    Article  PubMed  Google Scholar 

  • Eddershaw PJ, Beresford AP, Bayliss MK (2000) ADME/PK as part of a rational approach to drug discovery. Drug Discov Today 5(9):409–414

    Article  CAS  PubMed  Google Scholar 

  • Edlin CD, Morgans G, Winks S, Duffy S, Avery VM, Wittlin S, Waterson D, Burrows J, Bryans J (2012) Identification and in-vitro ADME assessment of a series of novel anti-malarial agents suitable for hit-to-lead chemistry. ACS Med Chem Lett 3(7):570–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enck P, Klosterhalfen S (2019) Placebos and the placebo effect in drug trials. Handb Exp Pharmacol 260:399–431

    Article  CAS  PubMed  Google Scholar 

  • Filiou MD, Turck CW, Martins-de-Souza D (2011) Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 5(1–2):38–49

    Article  CAS  PubMed  Google Scholar 

  • Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M (2006) High-throughput screening: update on practices and success. J Biomol Screen 11(7):864–869

    Article  PubMed  Google Scholar 

  • Gevaert K, Vandekerckhove J (2000) Protein identification methods in proteomics. Electrophoresis 21(6):1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25:1315–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris RK, Wasylishen RE, Duer MJ (eds) (2009) NMR crystallography. Wiley, New York

    Google Scholar 

  • He YD (2006) Genomic approach to biomarker identification and its recent applications. Cancer Biomark 2(3–4):103–133

    Article  CAS  PubMed  Google Scholar 

  • Huang Z (2007) Drug discovery research: new frontiers in the post-genomic era. John Wiley & Sons, New York

    Book  Google Scholar 

  • Huizar CC, Raphael I, Forsthuber TG (2020) Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 358:104219

    Article  PubMed Central  Google Scholar 

  • Ion A, Popa IM, Papagheorghe LM, Lisievici C, Lupu M, Voiculescu V, Caruntu C, Boda D (2016) Proteomic approaches to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers 2016:9602472

    Article  PubMed  PubMed Central  Google Scholar 

  • Iskar M, Zeller G, Zhao XM, van Noort V, Bork P (2012) Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr Opin Biotechnol 23(4):609–616

    Article  CAS  PubMed  Google Scholar 

  • Issaq HJ, Veenstra TD (2008) Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques 44(5):697–700

    Article  CAS  PubMed  Google Scholar 

  • Ivy SP, Siu LL, Garrett-Mayer E, Rubinstein L (2010) Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: a report from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin Cancer Res 16(6):1726–1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Zhou Y (2005) Using bioinformatics for drug target identification from the genome. Am J Pharmacogenomics 5:387–396

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Pazdur R, Sridhara R (2017) Re-evaluating eligibility criteria for oncology clinical trials: analysis of investigational new drug applications in 2015. J Clin Oncol 35(33):3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DE, Shaw DJ (2023) The dangerous use of genetic information. J Inf Commun Ethics Soc 21:533

    Article  Google Scholar 

  • Kaiafa G, Veneti S, Polychronopoulos G, Pilalas D, Daios S, Kanellos I, Didangelos T, Pagoni S, Savopoulos C (2021) Is HbA1c an ideal biomarker of well-controlled diabetes? Postgrad Med J 97(1148):380–383

    Article  PubMed  Google Scholar 

  • Kharchenko PV (2021) The triumphs and limitations of computational methods for scRNA-seq. Nat Methods 18(7):723–732

    Article  CAS  PubMed  Google Scholar 

  • Kim WO (2012) Institutional review board (IRB) and ethical issues in clinical research. Korean J Anesthesiol 62(1):3–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirsten N, Bulai Livideanu C, Richard MA, Konstantinou MP, Khemis A, Balluteaud C, Goujon C, Beylot-Barry M, Paul C, French Psoriasis Research Group (2016) Inclusion and exclusion criteria in phase III trials with systemic agents in psoriasis: the external validity of drug development. Br J Dermatol 175(3):636–638

    Article  CAS  PubMed  Google Scholar 

  • Knudsen DR, Raman P, Ettefa F, De Ravin L, Jose AM (2023) Target-specific requirements for RNA interference can be explained by a single regulatory network. bioRxiv 2023:527351

    Google Scholar 

  • Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E, Pierleoni A (2017) Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res 45(D1):D985–D994

    Article  CAS  PubMed  Google Scholar 

  • Kramer R, Cohen D (2004) Functional genomics to new drug targets. Nat Rev Drug Discov 3(11):965–972

    Article  CAS  PubMed  Google Scholar 

  • Kraus VB (2018) Biomarkers as drug development tools: discovery, validation, qualification and use. Nat Rev Rheumatol 14(6):354–362

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Bansal G, Narang A, Basak T, Abbas T, Dash D (2016) Integrating transcriptome and proteome profiling: strategies and applications. Proteomics 16(19):2533–2544

    Article  CAS  PubMed  Google Scholar 

  • Lacombe O, Videau O, Chevillon D, Guyot AC, Contreras C, Blondel S, Nicolas L, Ghettas A, Bénech H, Thevenot E, Pruvost A (2011) In vitro primary human and animal cell-based blood− brain barrier models as a screening tool in drug discovery. Mol Pharm 8(3):651–663

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien PJ, Fourcroy JL, Dixit R, Pandite L, Pietrusko RG, Soares HD (2005) Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res 22:499–511

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, Yu M, Gordon N, Ji J, Sissung TM, Figg WD (2014) Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 106(6):dju089

    Article  PubMed  PubMed Central  Google Scholar 

  • Lema VM, Mbondo M, Kamau EN (2009) Informed consent for clinical trials: a review. East Afr Med J 86(3):133–142

    CAS  PubMed  Google Scholar 

  • Lemmens T, Gibson S (2014) Decreasing the data deficit: improving post-market surveillance in pharmaceutical regulation. McGill Law J 59(4):943–988

    Article  Google Scholar 

  • Lhoumaud P, Sethia G, Izzo F, Sakellaropoulos T, Snetkova V, Vidal S, Badri S, Cornwell M, Di Giammartino DC, Kim KT, Apostolou E (2019) EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-seq signals with DNA methylation. Genome Biol 20(1):1–2

    Article  Google Scholar 

  • Li XH, Li C, Xiao ZQ (2011) Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer. J Proteome 74(12):2642–2649

    Article  CAS  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11(3):1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Mehta S, Küçük-McGinty H, Turner JP, Vidovic D, Forlin M, Koleti A, Nguyen DT, Jensen LJ, Guha R, Mathias SL (2017) Drug target ontology to classify and integrate drug discovery data. J Biomed Semantics 8:1–6

    Article  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:1

    PubMed  Google Scholar 

  • Mäbert K, Cojoc M, Peitzsch C, Kurth I, Souchelnytskyi S, Dubrovska A (2014) Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 90(8):659–677

    Article  PubMed  Google Scholar 

  • Manjasetty BA, Büssow K, Panjikar S, Turnbull AP (2012) Current methods in structural proteomics and its applications in biological sciences. 3Biotech 2:89–113

    Google Scholar 

  • Mathai N, Chen Y, Kirchmair J (2020) Validation strategies for target prediction methods. Brief Bioinform 21(3):791–802

    Article  CAS  PubMed  Google Scholar 

  • Matthews H, Hanison J, Nirmalan N (2016) “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes 4(3):28

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9(5):580–588

    Article  CAS  PubMed  Google Scholar 

  • McEwen AB, Henson CM, Wood SG (2014) Quantitative whole-body autoradiography, LC–MS/MS and MALDI for drug-distribution studies in biological samples: the ultimate matrix trilogy. Bioanalysis 6(3):377–391

    Article  CAS  PubMed  Google Scholar 

  • Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, Rhodes D, Alföldi J, Trembath RC, van Heel DA, Daly MJ (2020) Evaluating drug targets through human loss-of-function genetic variation. Nature 581(7809):459–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore N, Berdaï D, Blin P, Droz C (2019) Pharmacovigilance–the next chapter. Therapies 74(6):557–567

    Article  Google Scholar 

  • Ni YH, Ding L, Hu QG, Hua ZC (2015) Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 9(1–2):86–97

    Article  CAS  PubMed  Google Scholar 

  • Noah JW (2010) New developments and emerging trends in high-throughput screening methods for lead compound identification. Int J High Throughput Screen 1:141–149

    Article  CAS  Google Scholar 

  • Pearson AD, Herold R, Rousseau R, Copland C, Bradley-Garelik B, Binner D, Capdeville R, Caron H, Carleer J, Chesler L, Geoerger B (2016) Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur J Cancer 62:124–131

    Article  PubMed  Google Scholar 

  • Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M (2020) RNA therapeutics: identification of novel targets leading to drug discovery. J Cell Biochem 121(2):898–929

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Amato F, Braconi C (2021) Patient-derived organoids as a model for cancer drug discovery. Int J Mol Sci 22(7):3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj GM (2019) Pharmacogenetics, pharmacogenomics, and personalized medicine. In: Introduction to basics of pharmacology and toxicology: Volume 1: general and molecular pharmacology: principles of drug action. Springer, Cham, pp 235–259

    Chapter  Google Scholar 

  • Raj GM, Priyadarshini R, Mathaiyan J (2015) Drug patents and intellectual property rights. Eur J Clin Pharmacol 71:403–409

    Article  CAS  PubMed  Google Scholar 

  • Rao VS, Srinivas K (2011) Modern drug discovery process: an in silico approach. J Bioinform Seq Anal 2(5):89–94

    Google Scholar 

  • Rauniyar N, Yates JR III (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13(12):5293–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A (2018) Early probe and drug discovery in academia: a minireview. High Throughput 7(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini S (2016) PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol 39:97–106

    Article  CAS  Google Scholar 

  • Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422(6928):216–225

    Article  CAS  PubMed  Google Scholar 

  • Samuel JN, Booth CM, Eisenhauer E, Brundage M, Berry SR, Gyawali B (2022) Association of quality-of-life outcomes in cancer drug trials with survival outcomes and drug class. JAMA Oncol 8(6):879–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah UJ, Nasiruddin M, Dar SA, Khan MK, Akhter MR, Singh N, Rabaan AA, Haque S (2020) Emerging biomarkers and clinical significance of HPV genotyping in prevention and management of cervical cancer. Microb Pathog 143:104131

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16(15–16):2160–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel EB, Lakings DB (2008) Regulatory considerations. Preclinical development handbook: toxicology. Wiley, New York, pp 945–963

    Book  Google Scholar 

  • Sleno L, Emili A (2008) Proteomic methods for drug target discovery. Curr Opin Chem Biol 12(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6(2):145–157

    Article  CAS  PubMed  Google Scholar 

  • Streiner DL, Norman GR (2009) Drug trial phases. Commun Oncol 6(1):36–40

    Article  Google Scholar 

  • Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S (2019) Exploring the protein–protein interaction landscape in plants. Plant Cell Environ 42(2):387–409

    Article  CAS  PubMed  Google Scholar 

  • Sydor JR, Nock S (2003) Protein expression profiling arrays: tools for the multiplexed high-throughput analysis of proteins. Proteome Sci 1(1):1–7

    Article  Google Scholar 

  • Theilgaard-Moench K, Boultwood J, Ferrari S, Giannopoulos K, Hernandez-Rivas JM, Kohlmann A, Morgan M, Porse B, Tagliafico E, Zwaan CM, Wainscoat J (2011) Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 25(6):909–920

    Article  CAS  Google Scholar 

  • Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Uitdehaag JC, Verkaar F, Alwan H, de Man J, Buijsman RC, Zaman GJ (2012) A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets. Br J Pharmacol 166(3):858–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113(19):2335–2362

    Article  PubMed  Google Scholar 

  • Vemula D, Singothu S, Bhandari V (2023) Concepts in pharmacogenomics: tools and applications. In: Recent advances in pharmaceutical innovation and research, vol 12. Springer Nature Singapore, Singapore, pp 41–76

    Chapter  Google Scholar 

  • Waduge P, Tian H, Webster KA, Li W (2022) Profiling disease-selective drug targets: from proteomics to ligandomics. Drug Discov Today 28:103430

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller CL, Shah A, Nolte M (2007) Strategies to support drug discovery through integration of systems and data. Drug Discov Today 12(15–16):634–639

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chiu JF, He QY (2005) Proteomics in computer-aided drug design. Curr Comput Aided Drug Des 1(1):43–52

    Article  Google Scholar 

  • Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR (2019) Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 169:200–223

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang Y, Chen S, Wang J (2021) Deep DRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Brief Bioinform 22(5):bbab048

    Article  PubMed  Google Scholar 

  • Weeke P, Roden DM (2014) Applied pharmacogenomics in cardiovascular medicine. Annu Rev Med 65:81–94

    Article  CAS  PubMed  Google Scholar 

  • Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, Henning E, Blackburn H, Loos RJ, Wareham NJ, O'Rahilly S (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45(5):513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildey MJ, Haunso A, Tudor M, Webb M, Connick JH (2017) High-throughput screening. Annu Rep Med Chem 50:149–195

    CAS  Google Scholar 

  • Wilson BJ, Nicholls SG (2015) The human genome project, and recent advances in personalized genomics. Risk Manag Healthc Policy 8:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson FR, Coombes ME, Brezden-Masley C, Yurchenko M, Wylie Q, Douma R, Varu A, Hutton B, Skidmore B, Cameron C (2018) Herceptin®(trastuzumab) in HER2-positive early breast cancer: a systematic review and cumulative network meta-analysis. Syst Rev 7(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci 110(37):E3487–E3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Comhair SA, Chen R, Hu B, Hou Y, Zhou Y, Mavrakis LA, Janocha AJ, Li L, Zhang D, Willard BB (2019) Integrative proteomics and phosphoproteomics in pulmonary arterial hypertension. Sci Rep 9(1):18623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Adelstein SJ, Kassis AI (2012) Target discovery from data mining approaches. Drug Discov Today 17:S16–S23

    Article  CAS  PubMed  Google Scholar 

  • Yugandhar K, Gupta S, Yu H (2019) Inferring protein-protein interaction networks from mass spectrometry-based proteomic approaches: a mini-review. Comput Struct Biotechnol J 17:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S, Tavakkoly-Bazzaz J (2017) New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 24(6):233–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Lv C, Zhang LJ, Guo X, Shen YW, Nagle DG, Zhou YD, Liu SH, Zhang WD, Luan X (2021) Application of omics-and multi-omics-based techniques for natural product target discovery. Biomed Pharmacother 141:111833

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Dharssi S, Wu M, Li J, Lu Z (2019) Text mining for drug discovery. Bioinformatics and drug. Discovery:231–252

    Google Scholar 

  • Zhou T, Yao J, Liu Z (2017) Gene ontology, enrichment analysis, and pathway analysis. In: Bioinformatics in aquaculture: principles and methods. Wiley, New York, pp 150–168

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geethaa Sahgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundarasekar, J., Sahgal, G. (2024). Role of Genomics and Proteomics in Drug Discovery. In: Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S. (eds) Concepts in Pharmaceutical Biotechnology and Drug Development . Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-97-1148-2_11

Download citation

Publish with us

Policies and ethics