Skip to main content

Bimetallic Copper-Cobalt Nanoparticles Decorated on the Carbon Microtubes Derived from the Used FM for Electrochemical Pollution Detection of Lead

  • Conference paper
  • First Online:
Proceedings of The 9th International Conference on Water Resource and Environment (WRE 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 468))

Included in the following conference series:

  • 63 Accesses

Abstract

The rise of covid-19 had an unfathomable impact on society. It resulted in the widespread usage and disposal of FMs. Particularly polypropylene FMs, which are inexpensive. This study aimed to repurpose discarded FMs into carbon material for potential applications. The Face Mask (FM) sample was subjected to pyrolysis at selected temperatures. Crystal structure and formation were studied using XRD and FESEM. FM samples exhibited good electrochemical features, better than the other samples in an alkaline medium. The microtube-based FM sample was coated with cobalt-copper bimetallic composites and evaluated for their electrochemical sensing potential in lead detection in wastewater. This study focuses on upcycling waste into a sensor for detecting another pollutant. We believe this makes the process double effective, reducing the levels of both contaminants from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, S., Yuan, Y., Chen, R., Xu, X., Zhang, D.: Kinetic, thermodynamic and chemical reaction analyses of typical surgical FM waste pyrolysis. Therm. Sci. Eng. Prog. 26, 101135 (2021)

    Article  Google Scholar 

  2. Lisa Allison, A., Ambrose-Dempster, E., Domenech Aparsi, T., Bawn, M., Casas, M.: The environmental dangers of employing single-use FMs as part of a COVID-19 exit strategy (n.d.)

    Google Scholar 

  3. Liu, X., Zhang, S.: COVID-19: FMs and human-to-human transmission. Influenza Other Respi. Viruses 14(4), 472 (2020)

    Article  Google Scholar 

  4. Sangkham, S.: FM and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2, 100052 (2020)

    Article  Google Scholar 

  5. Selvaranjan, K., Navaratnam, S., Rajeev, P., Ravintherakumaran, N.: Environmental challenges induced by extensive use of FMs during COVID-19: a review and potential solutions. Environ. Challenges 3, 100039 (2021)

    Article  Google Scholar 

  6. Wang, Y., et al.: Reduction of secondary transmission of SARS-CoV-2 in households by FM use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob. Heal. 5(5), e002794 (2020)

    Article  Google Scholar 

  7. Mohammed, A.S., Kapri, A., Goel, R., Mohammed, A.S., Kapri, A., Goel, R.: Heavy metal pollution: source, impact, and remedies. 1–28 (2011)

    Google Scholar 

  8. Duruibe, J.O., Ogwuegbu, M.O.C., Egwurugwu: Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2(5), 112–118 (2007)

    Google Scholar 

  9. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., Bi, J.: A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci. Total. Environ. 642, 690–700 (2018)

    Article  Google Scholar 

  10. Jin, L., et al.: Global endeavors to address the health effects of urban air pollution. Environ. Sci. Technol. 56(11), 6793–6798 (2022)

    Article  Google Scholar 

  11. Begum, A., Ramaiah, M., Harikrishna, Khan, I., Veena, K.: Heavy metal pollution and chemical profile of cauvery river water. J. Chem. 6(1), 47–52 (2009)

    Google Scholar 

  12. Cao, J., Xie, C., Hou, Z.: Ecological evaluation of heavy metal pollution in the soil of Pb-Zn mines. Ecotoxicology 31(2), 259–270 (2022)

    Article  Google Scholar 

  13. Tinlin-Mackenzie, A., Rowland, B.W., Delany, J., Scott, C.L., Fitzsimmons, C.: The lugworm fishery in Northumberland, UK: bait digging impacts in a marine protected area. J. Exp. Mar. Bio. Ecol. 552, 151736 (2022)

    Article  Google Scholar 

  14. Collin, S., et al.: Bioaccumulation of lead (Pb) and its effects in plants: a review. J. Hazard. Mater. Lett. 3, 100064 (2022)

    Article  Google Scholar 

  15. Gloag, D.: Sources of lead pollution. Br. Med. J. (Clin. Res. Ed.) 282(6257), 41 (1981)

    Google Scholar 

  16. Kumar, S., Rahman, M.A., Islam, M.R., Hashem, M.A., Rahman, M.M.: Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 290, 133288 (2022)

    Article  Google Scholar 

  17. Abdelhameed, M., et al.: High-yield, one-pot upcycling of polyethylene and polypropylene waste into blue-emissive carbon dots. Green Chem. 25(5), 1925–1937 (2023)

    Article  Google Scholar 

  18. Yang, W., Cao, L., Li, W., Du, X., Lin, Z., Zhang, P.: Carbon Nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted FMs. Ionics (Kiel) 28(7), 3489–3500 (2022)

    Article  Google Scholar 

  19. Niu, P., Liu, B., Wei, X., Wang, X., Yang, J.: Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. J. Reinf. Plast. Compos. 30(1), 36–44 (2011)

    Article  Google Scholar 

  20. Li, W., Wang, C., Lu, X.: Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. J. Mater. Chem. A 9(7), 3786–3827 (2021)

    Article  Google Scholar 

  21. Jiang, M., et al.: Upcycling plastic waste to carbon materials for electrochemical energy storage and conversion. Chem. Eng. J. 461, 141962 (2023)

    Article  Google Scholar 

  22. Malode, S.J., Shanbhag, M.M., Kumari, R., Dkhar, D.S., Chandra, P., Shetti, N.P.: Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal. 222, 115102 (2023)

    Article  Google Scholar 

  23. Power, A.C., Gorey, B., Chandra, S., Chapman, J.: Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7(1), 19–41 (2018)

    Article  Google Scholar 

  24. Hu, X., Lin, Z.: Transforming waste polypropylene FMs into S-doped porous carbon as the cathode electrode for supercapacitors. Ionics (Kiel) 27(5), 2169–2179 (2021)

    Article  Google Scholar 

  25. Schroeder, V., Savagatrup, S., He, M., Lin, S., Swager, T.M.: Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019)

    Article  Google Scholar 

  26. Saxena, S., Srivastava, A.K.: Carbon nanotube-based sensors and their application. Nano-Optics 265–291 (2020)

    Google Scholar 

  27. Cheng, H., Li, M.L., Su, C.Y., Li, N., Liu, Z.Q.: Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn–Air batteries. Adv. Funct. Mater. 27(30), 1–10 (2017)

    Article  Google Scholar 

  28. Shaikh, A.F., Tamboli, M.S., Patil, R.H., Bhan, A., Ambekar, J.D., Kale, B.B.: Bioinspired carbon quantum dots: an antibiofilm agents. J. Nanosci. Nanotechnol. 19(4), 2339–2345 (2018)

    Article  Google Scholar 

  29. Rathla, K.S.G., Jagadisha, A.S., Nagaraja, E., Kumar, B.N.P., Prasanna, D.G., Umesha, S.D.: Studies on oxygen evolution reaction performance of porous Co3O4–NiO–B2O3 composites. Chem. Pap. 77(2), 867–875 (2023)

    Article  Google Scholar 

  30. Chandrappa, K.G., Venkatesha, T.V.: Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles. J. Exp. Nanosci. 8(4), 516–532 (2013)

    Article  Google Scholar 

  31. Sreekanth, M., Feroskhan, M., Gobinath, N., Rao, G.L., Sinaga, N.: Comprehensive exergy analysis of thermal management of cabin, battery and motor in electric vehicles. Int. J. Appl. Sci. Eng. 19(3), 1–9 (2022)

    Article  Google Scholar 

  32. Ayu, I., Pratiwi, P., Saptoadi, H., Sentanuhady, J., Purnomo, C.W., Rohmat, T.A.: Tetrapak waste treatment using microwave pyrolysis to produce alternative gas fuels. Int. J. Appl. Sci. Eng. 19(4), 1–11 (2022)

    Article  Google Scholar 

  33. Kumar, M., Chang, J.: Nanostructured Materials for Photoelectrochemical Water Splitting. Nanostructured Mater. Photoelectrochem. Water Split. (2021)

    Google Scholar 

  34. Yallappa, S., Shivakumar, M., Nagashree, K.L., Dharmaprakash, M.S., Vinu, A., Hegde, G.: Electrochemical determination of nitrite using catalyst free mesoporous carbon nanoparticles from bio renewable areca nut seeds. J. Electrochem. Soc. 165(10), H614–H619 (2018)

    Article  Google Scholar 

  35. Li, K., et al.: Nitrogen doped carbon dots derived from natural seeds and their application for electrochemical sensing. J. Electrochem. Soc. 166(2), B56–B62 (2019)

    Article  Google Scholar 

  36. Veeramani, V., Madhu, R., Chen, S.M., Veerakumar, P., Syu, J.J., Bin Liu, S.: Cajeput tree bark derived activated carbon for the practical electrochemical detection of vanillin. New J. Chem. 39(12), 9109–9115 (2015)

    Google Scholar 

  37. Madhu, R., Karuppiah, C., Chen, S.M., Veerakumar, P., Bin Liu, S.: Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons. Anal. Methods 6(14), 5274–5280 (2014)

    Google Scholar 

  38. Zeinu, K.M., et al.: A novel hollow sphere bismuth oxide doped mesoporous carbon nanocomposite material derived from sustainable biomass for picomolar electrochemical detection of lead and cadmium. J. Mater. Chem. A 4(36), 13967–13979 (2016)

    Article  Google Scholar 

  39. Baikeli, Y., et al.: Differential pulse voltammetry detection of Pb(ii) using nitrogen-doped activated nanoporous carbon from almond shells. RSC Adv. 9(41), 23678–23685 (2019)

    Article  Google Scholar 

  40. Li, M., et al.: Novel bamboo leaf shaped CuO nanorod@hollow carbon fibers derived from plant biomass for efficient and nonenzymatic glucose detection. Analyst 140(18), 6412–6420 (2015)

    Article  Google Scholar 

  41. Sha, R., Jones, S.S., Vishnu, N., Soundiraraju, B., Badhulika, S.: A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine. Electroanalysis 30(10), 2228–2232 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The Chaoyang University of Technology authors thank Taiwan’s National Science and Technology Council for supporting this work (Grant no.: MOST 111-2221-E-324-004-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Hsing Chang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 49 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasad, K.V., Kumar, M., Chang, JH. (2024). Bimetallic Copper-Cobalt Nanoparticles Decorated on the Carbon Microtubes Derived from the Used FM for Electrochemical Pollution Detection of Lead. In: Weng, CH. (eds) Proceedings of The 9th International Conference on Water Resource and Environment. WRE 2023. Lecture Notes in Civil Engineering, vol 468. Springer, Singapore. https://doi.org/10.1007/978-981-97-0948-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0948-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0947-2

  • Online ISBN: 978-981-97-0948-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics