Skip to main content

Part of the book series: Intelligent Control and Learning Systems ((ICLS,volume 12))

  • 44 Accesses

Abstract

ILC has received attention up until this point due to its many industrial uses, including robotic manipulators, hard disk drives, quick thermal processing, and chemical polymerization/crystallization, see Kurek and Zaremba (1993), Wang et al. (2004), Liu and Jia (2012), Meng et al. (2012), Li and Li (2012). The goal of ILC designs is to use repetition to enhance tracking performance in a finite-time interval despite having incomplete knowledge of the dynamics structure and parameter values. A direct adaptive iterative learning control is provided in Wang et al. (2004) for a class of repeated nonlinear systems with unknown nonlinearities and variable initial resetting errors. This control is based on a new output-recurrent fuzzy neural network. The formation problem is equivalently transformed into a stability control problem over finite-time intervals by using the iterative learning approach, as demonstrated in Liu and Jia (2012). According to in Li and Li (2012), all follower agents maintain the necessary distance from the leader and reach velocity consensus uniformly on the finite interval [0, T] for the formation problem, whereas all follower agents track the leader uniformly on the finite interval [0, T] for the consensus problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Calise AJ, Hovakimyan N, Idan M (2001) Adaptive output feedback control of nonlinear systems using neural networks. Automatica 37(8):1201–1211

    Article  MathSciNet  Google Scholar 

  • Cao JD, Lu JQ (2006) Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16:013133

    Article  MathSciNet  Google Scholar 

  • Cao JD, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172

    Article  Google Scholar 

  • Driessen B, Sadegh N (2002) Multi-input square iterative learning control with input rate limits and bounds. IEEE Trans Syst Man Cybern B 32(4):545–550

    Article  Google Scholar 

  • Han H, Lee J (1994) Necessary and sufficient conditions for stability of time-varying discrete interval matrices. Int J Control 59(4):1021–1029

    Article  MathSciNet  Google Scholar 

  • Hu TS, Lin ZL, Chen BM (2002) Analysis and design for discrete-time linear systems subject to actuator saturation. Syst Control Lett 45(2):97–112

    Article  MathSciNet  Google Scholar 

  • Kurek J, Zaremba M (1993) Iterative learning control synthesis based on 2-D system theory. IEEE Trans Autom Control 38(1):121–125

    Article  MathSciNet  Google Scholar 

  • Li JS, Li JM (2012) Adaptive iterative learning control for coordination of second-order multi-agent systems. Int J Robust Nonlin Syst. 24(18):3282–3299

    Article  MathSciNet  Google Scholar 

  • Li J, Chen WS, Li JM (2011) Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int J Robust Nonlin 21(4):452–472

    Article  MathSciNet  Google Scholar 

  • Liu Y, Jia YM (2012) An iterative learning approach to formation control of multi-agent systems. Syst Control Lett 61(1):148–154

    Article  MathSciNet  Google Scholar 

  • Liu XY, Park JH, Jiang N, Cao JD (2014) Nonsmooth finite-time stabilization of neural networks with discontinuous activations. Neural Netw 52:25–32

    Article  Google Scholar 

  • Lu JQ, Ho DWC, Wang ZD (2009) Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers. IEEE Trans Neural Netw 20(10):1617–1629

    Article  Google Scholar 

  • Mavrovouniotis M, Chang S (1992) Hierarchical neural networks. Comput Chem Eng 16(4):347–369

    Article  Google Scholar 

  • Meng DY, Jia YM, Du JP, Yu FS (2012) Tracking control over a finite interval for multi-agent systems with a time-varying reference trajectory. Syst Control Lett 61(7):807–818

    Article  MathSciNet  Google Scholar 

  • Meng ZY, Zhao ZY, Lin ZL (2013) On global leader-following consensus of identical linear dynamic systems subject to actuator saturation. Syst Control Lett 62(2):132–142

    Article  MathSciNet  Google Scholar 

  • Meng DY, Jia YM, Du JM, Yu FS (2013) Tracking algorithms for multiagent systems. IEEE Trans Neural Netw Learn Syst. 24(10):1660–1676

    Article  Google Scholar 

  • Meng DY, Jia YM, Du JP, Zhang J (2014) On iterative learning algorithms for the formation control of nonlinear multi-agent systems. Automatica 50(1):291–295

    Article  MathSciNet  Google Scholar 

  • Meng DY, Jia YM, Du JP (2014) Robust consensus tracking control for multiagent systems with initial state shifts, disturbances, and switching topologies. IEEE Trans Neural Netw Learn Syst. 26(4):809–824

    Article  MathSciNet  Google Scholar 

  • Park K, Bien Z (2002) A study on robustness of iterative learning controller with input saturation against time-delay. In: The 4th Asian Control Conference. Singapore

    Google Scholar 

  • Shih MH, Lur YY, Pang CY (1998) An inequality for the spectral radius of an interval matrix. Linear Algebra Appl 274(1):27–36

    Article  MathSciNet  Google Scholar 

  • Tan Y, Xu JX, Norrlöf M, Freeman C (2011) On reference governor in iterative learning control for dynamic systems with input saturation. Automatica 47(11):2412–2419

    Article  MathSciNet  Google Scholar 

  • Wang YC, Chien CJ, Teng CC (2004) Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network. IEEE Trans Syst Man Cybern B 34(3):1348–1359

    Article  Google Scholar 

  • Wang ZD, Liu YR, Li MZ, Liu XH (2006) Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 17(3):814–820

    Article  Google Scholar 

  • Wu S, Er M (2000) Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Trans Syst Man Cybern B 30(2):358–364

    Article  Google Scholar 

  • Wu F, Lin ZL, Zheng Q (2007) Output feedback stabilization of linear systems with actuator saturation. IEEE Trans Autom Control 52(1):122–128

    Article  MathSciNet  Google Scholar 

  • Xu JX, Tan Y, Lee T (2004) Iterative learning control design based on composite energy function with input saturation. Automatica 40(8):1371–1377

    Article  MathSciNet  Google Scholar 

  • Zeng ZG, Zheng WX (2013) Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane. IEEE Trans Neural Netw Learn Syst. 24(11):1749–1762

    Article  Google Scholar 

  • Zhang CL, Jiang J, Kamel M (2005) Intrusion detection using hierarchical neural networks. Pattern Recogn Lett 26(6):779–791

    Article  Google Scholar 

  • Zheng Q, Wu F (2008) Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions. Syst Control Lett 57(11):896–903

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiong, W., Luo, Z., Ho, D.W.C. (2024). Tracking Under Saturated Finite Interval and HNN-Structural Output. In: Iterative Learning Control for Network Systems Under Constrained Information Communication. Intelligent Control and Learning Systems, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-97-0926-7_6

Download citation

Publish with us

Policies and ethics