Skip to main content

Multiscale Modelling of Polymer Composites

  • Chapter
  • First Online:
Polymer Composites: From Computational to Experimental Aspects

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 69 Accesses

Abstract

Polymers are increasingly replacing conventional materials at a fast pace. New and innovative products are being developed daily. Any useful application of these products requires knowledge of material properties and a thorough understanding of various mechanisms involved in failure of these materials. All these require material procurement and human resources. Simulation procedures can make this task much easier and involve less human involvement and material wastage. Polymers can be tested much before their actual physical development. Various simulation techniques have been developed trying to investigate the polymer at nano- to microlevel. All these methods have their own advantages and disadvantages. This chapter is a review of various methods being used today to understand polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice husk flour filled polypropylene composites, mechanical and morphological studies. Compos Struct 63:305–312

    Article  Google Scholar 

  2. Premlal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of the rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839

    Article  Google Scholar 

  3. Rosa SML, Santos EF, Ferreira CA, Nachtigall SMB (2009) Studies on the properties of rice husk filled PP composites-effect of Maleated PP. Mater Res 12(3):333–338

    Article  CAS  Google Scholar 

  4. Bisht N, Gope PC (2018) Effect of alkali treatment on mechanical properties of rice husk flour reinforced epoxy bio-composite. Mater Today: Proc 5(11, Part 3):24330–24338

    Google Scholar 

  5. Zhang HY, Li JY, Pan Y et al (2022) Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met 41:3612–3629. https://doi.org/10.1007/s12598-022-02057-3

  6. Das TK, Ghosh P, Das NC (2019) Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater 2:214–233. https://doi.org/10.1007/s42114-018-0072-z

  7. Tarhini A, Tehrani-Bagha AR (2023) Advances in preparation methods and conductivity properties of graphene-based polymer composites. Appl Compos Mater. https://doi.org/10.1007/s10443-023-10145-5

  8. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul 46(2):136–154. https://doi.org/10.1080/08927022.2019.1680844

    Article  CAS  Google Scholar 

  9. Sari NH, Fajrin J, Fudholi A (2020) Characterisation of swellability and compressive and impact strength properties of corn husk fibre composites. Compos Commun 18:49–54. https://www.sciencedirect.com/science/article/pii/S2452213920300188. https://doi.org/10.1016/j.coco.2020.01.009. ISSN 2452-2139

  10. Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC, Ekundayo G (2016) Mechanical properties of sisal fibre-reinforced polymer composites: a review. Compos Interfaces 23(1):15–36. https://doi.org/10.1080/09276440.2016.1087247

    Article  Google Scholar 

  11. Wang F, Chen ZQ, Wei YQ, Zeng XG (2010) Numerical modeling of tensile behavior of fiber-reinforced polymer composites. J Compos Mater 44(19):2325–2340

    Article  CAS  Google Scholar 

  12. Lee DC, Kwon G, Kim H, Lee HJ, Sung BJ (2012) Three-dimensional Monte Carlo simulation of the electrical conductivity of carbon nanotube/polymer composites. Appl Phys Express 5(4):045101

    Article  Google Scholar 

  13. Yan D, Wen J, Xu G (2016) A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl Therm Eng 94:827–835

    Article  CAS  Google Scholar 

  14. Okabe T, Nishikawa M (2009) GLS strength prediction of glass-fiber-reinforced polypropylene. J Mater Sci 44:331–334

    Article  CAS  Google Scholar 

  15. Bouaziz A, Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre JM (2007) Micromechanical modelling and experimental investigation of random discontinuous glass fiber polymer–matrix composites. Compos Sci Technol 67(15–16):3278–3285

    Article  CAS  Google Scholar 

  16. Wang W, Jayatissa AH (2015) Computational and experimental study of electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite using Monte Carlo method and percolation theory. Synth Met 204:141–147

    Article  CAS  Google Scholar 

  17. Oskouyi AB, Mertiny P (2011) Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng 10:403–408

    Article  Google Scholar 

  18. Zabihi Z, Araghi H (2016) Monte Carlo simulations of effective electrical conductivity of graphene/poly (methyl methacrylate) nanocomposite: Landauer-Buttiker approach. Synth Met 217:87–93

    Article  CAS  Google Scholar 

  19. Fang C, Zhang J, Chen X, Weng GJ (2020) Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a Monte Carlo method. Nanomaterials 10(6):1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Folorunso O, Hamam Y, Sadiku R, Ray SS, Joseph AG (2019) Parametric analysis of electrical conductivity of polymer-composites. Polymers 11(8):1250

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spanos P, Elsbernd P, Ward B, Koenck T (2013) Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Philos Trans R Soc A Math Phys Eng Sci 371(1993):20120494

    Article  CAS  Google Scholar 

  22. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    Article  CAS  PubMed  Google Scholar 

  23. Hadipeykani M, Aghadavoudi F, Toghraie D (2020) A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546:123995

    Article  CAS  Google Scholar 

  24. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-Heinemann

    Google Scholar 

  26. Hung PY, Lau KT, Cheng LK, Leng J, Hui D (2018) Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos B Eng 133:86–90

    Article  CAS  Google Scholar 

  27. Li Y, Wang Q, Wang S (2019) A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos B Eng 160:348–361

    Article  CAS  Google Scholar 

  28. Wagner HD, Vaia RA (2004) Nanocomposites: issues at the interface. Mater Today 7(11):38–42

    Article  CAS  Google Scholar 

  29. Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11):2445–2452

    Article  CAS  Google Scholar 

  30. Singh PK, Sharma K, Kumar A, Shukla M (2017) Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater 51(5):671–680

    Article  CAS  Google Scholar 

  31. Wei Q, Zhang Y, Wang Y, Yang M (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52(21):12889–12901

    Article  CAS  Google Scholar 

  32. Wang Y, Yang G, Wang W, Zhu S, Guo L, Zhang Z, Li P (2019) Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations. J Mol Liq 277:261–268

    Article  CAS  Google Scholar 

  33. Jiao W, Zheng T, Liu W, Jiao W, Wang R (2019) Molecular dynamics simulations of the effect of sizing agent on the interface property in carbon fiber reinforced vinyl ester resin composite. Appl Surf Sci 479:1192–1199

    Article  CAS  Google Scholar 

  34. Stevens MJ (2001) Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8):2710–2718

    Article  CAS  Google Scholar 

  35. Mansfield KF, Theodorou DN (1991) Atomistic simulation of a glassy polymer/graphite interface. Macromolecules 24(15):4295–4309

    Article  CAS  Google Scholar 

  36. Hadden CM, Jensen BD, Bandyopadhyay A, Odegard GM, Koo A, Liang R (2013) Molecular modeling of EPON-862/graphite composites: interfacial characteristics for multiple crosslink densities. Compos Sci Technol 76:92–99

    Article  CAS  Google Scholar 

  37. Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562

    Article  CAS  Google Scholar 

  38. Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos B Eng 43(8):3491–3496

    Article  CAS  Google Scholar 

  39. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155

    Article  Google Scholar 

  40. Elliott JA, Windle AH (2000) A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. J Chem Phys 113(22):10367–10376

    Article  CAS  Google Scholar 

  41. Wang YC, Ju SP, Huang TJ, Wang HH (2011) Modeling of polyethylene, poly (l-lactide), and CNT composites: a dissipative particle dynamics study. Nanoscale Res Lett 6:1–8

    Article  Google Scholar 

  42. Chakraborty S, Choudhury CK, Roy S (2013) Morphology and dynamics of carbon nanotube in polycarbonate carbon nanotube composite from dissipative particle dynamics simulation. Macromolecules 46(9):3631–3638

    Article  CAS  Google Scholar 

  43. Ketkaew R, Tantirungrotechai Y (2018) Dissipative particle dynamics study of SWCNT reinforced natural rubber composite system: an important role of self-avoiding model on mechanical properties. Macromol Theory Simul 27(3):1700093

    Article  Google Scholar 

  44. Kim YJ, Tan YF, Kim S (2018) Two-dimensional lattice Boltzmann modeling for effective thermal conductivity in carbon black filled composites. J Compos Mater 52(15):2047–2053

    Article  Google Scholar 

  45. Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53(1):743

    Article  CAS  Google Scholar 

  46. Kandhai D, Vidal DE, Hoekstra AG, Hoefsloot H, Iedema P, Sloot PMA (1998) A comparison between lattice-Boltzmann and finite-element simulations of fluid flow in static mixer reactors. Int J Mod Phys C 9(08):1123–1128

    Article  Google Scholar 

  47. Spaid MA, Phelan FR Jr (1997) Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys Fluids 9(9):2468–2474

    Article  CAS  Google Scholar 

  48. Fang WZ, Chen L, Gou JJ, Tao WQ (2016) Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method. Int J Heat Mass Transf 92:120–130

    Article  CAS  Google Scholar 

  49. Xie C, Wang J, Wang D, Pan N, Wang M (2015) Lattice Boltzmann modeling of thermal conduction in composites with thermal contact resistance. Commun Comput Phys 17(4):1037–1055

    Article  Google Scholar 

  50. Runacher A, Kazemzadeh-Parsi MJ, Di Lorenzo D, Champaney V, Hascoet N, Ammar A, Chinesta F (2023) Describing and modeling rough composites surfaces by using topological data analysis and fractional Brownian motion. Polymers 15(6):1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7:81–92

    Article  Google Scholar 

  52. Rissanou AN, Bačová P, Harmandaris V (2019) Investigation of the properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion. Phys Chem Chem Phys 21(43):23843–23854

    Article  CAS  PubMed  Google Scholar 

  53. Barbero Ever J (2013) Finite element analysis of composite materials using ANSYS®

    Google Scholar 

  54. Tenek LT, Argyris J (1997) Finite element analysis for composite structures, vol 59. Springer Science & Business Media

    Google Scholar 

  55. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Article  Google Scholar 

  56. Tan W, Naya F, Yang L, Chang T, Falzon BG, Zhan L, Molina-Aldareguía JM, González C, Llorca J (2018) The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling. Compos B Eng 138:206–221

    Article  CAS  Google Scholar 

  57. Nurhaniza M, Ariffin MKA, Ali A, Mustapha F, Noraini AW (2010) Finite element analysis of composites materials for aerospace applications. In: IOP conference series: materials science and engineering, vol 11, no 1, p 012010. IOP Publishing

    Google Scholar 

  58. Wen Y, Yue X, Hunt JH, Shi J (2018) Feasibility analysis of composite fuselage shape control via finite element analysis. J Manuf Syst 46:272–281

    Article  Google Scholar 

  59. Ghafarizadeh S, Chatelain JF, Lebrun G (2016) Finite element analysis of surface milling of carbon fiber-reinforced composites. Int J Adv Manuf Technol 87:399–409

    Article  Google Scholar 

  60. Ahmad F, Abbassi F, Park MK, Jung JW, Hong JW (2018) Finite element analysis for the evaluation of the low-velocity impact response of a composite plate. Adv Compos Mater

    Google Scholar 

  61. Liu X, Wang L, Tang X (2013) Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew Energy 57:111–119

    Article  Google Scholar 

  62. Wang L, Kolios A, Nishino T, Delafin PL, Bird T (2016) Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos Struct 153:123–138

    Article  Google Scholar 

  63. Heydari-Meybodi M, Saber-Samandari S, Sadighi M (2016) 3D multiscale modeling to predict the elastic modulus of polymer/nanoclay composites considering realistic interphase property. Compos Interfaces 23(7):641–661

    Article  CAS  Google Scholar 

  64. Li R, Chen Z, Wu W (2000) Generalized difference methods for differential equations: numerical analysis of finite volume methods. CRC Press

    Google Scholar 

  65. Rappaz M, Bellet M, Deville MO, Snyder R (2003) Numerical modeling in materials science and engineering. Springer-Verlag, Berlin, pp 448–475

    Book  Google Scholar 

  66. Song YS, Chung K, Kang TJ, Youn JR (2004) Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell. Compos Sci Technol 64(10–11):1629–1636

    Article  CAS  Google Scholar 

  67. Bansal Y, Pindera MJ (2006) Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int J Plast 22(5):775–825

    Article  CAS  Google Scholar 

  68. de Sousa Vieira C, Marques SPC (2019) A new three-dimensional finite-volume model for evaluation of thermal conductivity of periodic multiphase composites. Int J Heat Mass Trans 139:412–424. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.031

  69. Qiang, Chen Xuefeng, Chen Zhi, Zhai Zhibo, Yang (2016) A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases Composites Part B: Engineering 85216–232. https://doi.org/10.1016/j.compositesb.2015.09.014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Gunwant .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors confirm that there are no conflicts of interest associated with this work.

Ethical Compliance

The authors affirm that this study adheres to all ethical guidelines.

Competing Interests

No competing interests are declared by the authors.

Data and Material Availability

Data and materials are not applicable to this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunwant, D., Bisht, N. (2024). Multiscale Modelling of Polymer Composites. In: Sethi, S.K., Gupta, H.S., Verma, A. (eds) Polymer Composites: From Computational to Experimental Aspects. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-0888-8_3

Download citation

Publish with us

Policies and ethics